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RELATIONS AMONG THE FIRST VARIATION, THE

CONVOLUTIONS AND THE GENERALIZED

FOURIER-GAUSS TRANSFORMS

Man Kyu Im, Un Cig Ji, and Yoon Jung Park

Abstract. We first study the generalized Fourier-Gauss transforms of
functionals defined on the complexification BC of an abstract Wiener
space (H,B, ν). Secondly, we introduce a new class of convolution prod-

ucts of functionals defined on BC and study several properties of the
convolutions. Then we study various relations among the first variation,
the convolutions, and the generalized Fourier–Gauss transforms.

1. Introduction

In [1], Cameron introduced a transform of functionals defined on the com-
plexification K0[0, T ] of the Wiener space C0[0, T ] which is called the Fourier-
Wiener transform, and later it was modified by Cameron and Martin in [3].
More precisely, for a functional F defined onK0[0, T ], the Fourier-Wiener trans-
form G1,iF of F is defined by

G1,iF (y) =

∫
C0[0.T ]

F (x+ iy)m(dx), y ∈ K0[0, T ]

whenever it exists, where m is the Wiener measure, and the modified Fourier-
Wiener transform G√

2,iF of a functional F defined on K0[0, T ] is defined by

G√
2,iF (y) =

∫
C0[0.T ]

F (
√
2x+ iy)m(dx), y ∈ K0[0, T ]

if the integral exists. Also, in [7], Gross introduced νt-convolution defined by

(νtF )(y) = G√
t,1F (y) =

∫
B
F (

√
tx+ y)ν(dx)
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for certain functional F defined on B, where (H,B, ν) is an abstract Wiener
space, and then Lee in [15] introduced an integral transform Gα,βF of a func-
tional F defined on the complexification BC of the abstract Wiener space
(H,B, ν) and then Gα,βF is called the Fourier-Gauss transform (see, [5, 9, 14]
and the references are cited there in) of F which is defined by

Gα,βF (y) =

∫
B
F (αx+ βy)ν(dx), y ∈ BC

whenever it exists, where α, β ∈ C. In [5], the Fourier-Gauss transform was
generalized by Chung and Ji in white noise distribution theory (see, [8, 14, 16])
which, in the abstract Wiener space, can be defined by

GA,BF (y) =

∫
B
F (Ax+By)ν(dx), y ∈ BC

whenever it exists, where A and B are continuous linear operators from BC

into itself, and called the generalized Fourier-Gauss transform. Recently, in
[12], Ji and Obata investigated that the generalized Fourier-Gauss transforms
play an important role for the Bogoliubov transforms.

On the other hand, Yeh in [17] introduced a convolution product F1 ∗ F2 of
functionals F1 and F2 defined on K0[0, T ] by

(F1 ∗ F2) (y) =

∫
C0[0,T ]

F1

(
x+ y√

2

)
F2

(
x− y√

2

)
m(dx), y ∈ K0[0, T ]

whenever it exists, and studied an interesting relation between the Fourier-
Wiener transform and the convolution product:

G1,i (F1 ∗ F2) (x) = (G1,iF1) (y/
√
2) (G1,iF2) (−y/

√
2), y ∈ K0[0, T ]

for functionals F1 and F2 in a certain class of functionals defined on K0[0, T ].
Then the Yeh’s results were extended to the abstract Wiener space by Yoo in
[18]. For the study of various relations between the convolution product and
the analytic Fourier-Feynman transform, we refer to [4, 10].

Main purposes of this paper are three folds. We first study the generalized
Fourier-Gauss transform of functionals defined on BC (see Section 3). Secondly,
we introduce a new class of convolutions F1 ∗A,B,C,D F2 of functionals F1 and
F2 defined on BC which is defined by

(F1 ∗A,B,C,D F2) (x) =

∫
B
F1 (Ax+By)F2 (Cx+Dy) ν(dy), x ∈ BC,

whenever the integral exists, where A,B,C,D are continuous linear operators
from BC into itself, and then we study several properties of the convolutions
(see Section 4). Finally, we study various relations among the first variation,
the convolutions and the generalized Fourier-Gauss transforms (see Section 5).

The study of several relations between the first variation, the convolutions
and the analytic Fourier-Feynman transform are now in progress.
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2. Abstract Wiener space

In this section, we shall briefly recall of concepts, notations and known results
in the abstract Wiener space [7, 13]. Let (H,B, ν) be an abstract Wiener space,
i.e., H is a real (separable) Hilbert space, B is a real Banach space which is the
completion of H with respect to a weaker (measurable) norm ∥ · ∥B than the
norm on the Hilbert norm, and ν is the standard Gaussian measure on B. The
strong dual space of B is denoted by B∗. Let BC = {x + iy |x, y ∈ B} be the
complexification of B. For each x ∈ B, h ∈ B∗, ⟨x, h⟩ is well-defined Gaussian
random variable with mean 0 and variance ∥h∥2H, where ⟨·, ·⟩ is the complex
bilinear form on BC × B∗

C.
For each m ≥ 0, let Ea(m) be the class of functions ϕ on BC satisfying that

(i) for each x, y ∈ BC, ϕ(x+ λy) is an entire function of λ ∈ C;
(ii) the norm

∥ ϕ ∥m= sup
x∈BC

|ϕ(x)| exp{−m ∥ x ∥BC
}

is finite, where ∥ · ∥BC
is the norm on BC.

For each ξ in B∗
C, consider the function e⟨·, ξ⟩ defined on BC. Then

|e⟨x,ξ⟩| ≤ e∥x∥BC
∥ξ∥

and so for any m ≥∥ ξ ∥

∥ e⟨·,ξ⟩ ∥m≤ sup
x∈BC

e(∥ξ∥−m)∥x∥BC ≤ 1

and e⟨·,ξ⟩ in Ea(m).
For each 0 ≤ m ≤ n, we have

∥ ϕ ∥n= sup
x∈BC

|ϕ(x)|e−n∥x∥BC ≤ sup
x∈BC

|ϕ(x)|e−m∥x∥BC ≤∥ ϕ ∥m

and so, Ea(m) ⊂ Ea(n). Put
Ea ≡ ind lim

m→∞
Ea(m).

Then for any ξ ∈ B∗
C, e

⟨·,ξ⟩ ∈ Ea and the exponential vector (or coherent state)
ϕξ is defined by

ϕξ = e⟨·,ξ⟩−
1
2 ⟨ξ, ξ⟩.

Then ϕξ ∈ Ea and {ϕξ|ξ ∈ B∗
C} spans a dense subspace of Ea, see Corollary

3.3.8 in [16].

Theorem 2.1 (Fernique Theorem). There exists β > 0 such that∫
B
exp(β∥x∥2BC

)ν(dx) <∞.

By Theorem 2.1, the following corollary is immediate.

Corollary 2.2.

∫
B
exp(β∥x∥BC

)ν(dx) <∞ for all β > 0.
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3. Generalized Fourier-Gauss transform

Let L(BC,BC) denote the space of all continuous linear operators on BC.
Let S and T be in L(BC,BC). Now, we study the generalized Fourier-Gauss
transform introduced in [5].

Definition 3.1. Let ϕ be a functional defined on BC and S, T ∈ L(BC,BC).
Then the generalized Fourier-Gauss transform GS,Tϕ of ϕ is defined by

GS,Tϕ(x) ≡
∫
B
ϕ(Sx+ Ty)ν(dy), x ∈ BC

whenever it exists.

Note that for each S, T ∈ L(BC,BC), ϕ ∈ Ea(m) and x ∈ BC, we have∫
B
|ϕ(Sx+ Ty)|ν(dy) ≤∥ ϕ ∥m em∥S∥∥x∥BC

∫
B

(
em∥T∥∥y∥B

)
ν(dy)

and then by Corollary 2.2, the last integral is finite. Therefore, for each x ∈ BC,
the integral

∫
B ϕ(Sx + Ty)ν(dy) exists, and so the generalized Fourier-Gauss

transform GS,Tϕ of ϕ ∈ Ea(m) is well-defined.

Theorem 3.2. Let S, T ∈ L(BC,BC). Then for each m,n ≥ 0 such that
m∥S∥ ≤ n, the generalized Fourier-Gauss transform GS,T is continuous linear
from Ea(m) into Ea(n).

Proof. For each ϕ ∈ Ea(m), we have

∥ GS,Tϕ ∥n = sup
x∈BC

|GS,Tϕ(x)|e−n∥x∥BC

≤ sup
x∈BC

(∫
B
∥ ϕ ∥m

(
em∥Sx+Ty∥BC

)
ν(dy)

)
e−n∥x∥BC

≤∥ ϕ ∥m
(

sup
x∈BC

e(m∥S∥−n)∥x∥BC

)∫
B

(
em∥T∥∥y∥BC

)
ν(dy).

Since m ∥ S ∥ −n ≤ 0,

∥ GS,Tϕ ∥n≤
(∫

B

(
em∥T∥∥y∥BC

)
ν(dy)

)
∥ ϕ ∥m

and so, by Corollary 2.2, GS,T is continuous from Ea(m) into Ea(n). □
Theorem 3.3. Let S, T ∈ L(BC,BC). The generalized Fourier-Gauss trans-
form GS,T is continuous linear from Ea into itself.

Proof. The proof is immediate by Theorem 3.2. □
Proposition 3.4. For each S, T ∈ L(BC,BC) and ϕξ ∈ Ea, the generalized
Fourier-Gauss transform GS,Tϕξ of ϕξ is given by

GS,Tϕξ(x) = e⟨x,S
∗ξ⟩+ 1

2 ⟨(TT∗−I)ξ,ξ⟩ = e
1
2 ⟨(SS∗+TT∗−I)ξ, ξ⟩ϕS∗ξ(x).(3.1)

Proof. The proof is straightforward. □
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4. Convolutions and generalized Fourier-Gauss transforms

Let A,B,C,D ∈ L(BC,BC). We introduce a new class of convolutions of
functionals on BC, and study various relations between the convolutions and
the generalized Fourier-Gauss transforms.

Definition 4.1. Let ϕ and ψ be functionals defined on BC. Then the convo-
lution ϕ ∗A,B,C,D ψ of ϕ and ψ is defined by

ϕ ∗A,B,C,D ψ(x) ≡
∫
B
ϕ(Ax+By)ψ(Cx+Dy)ν(dy), x ∈ BC

whenever it exists.

Lemma 4.2. Let m1,m2 ≥ 0. For each ϕ ∈ Ea(m1), ψ ∈ Ea(m2), the convolu-
tion ϕ ∗A,B,C,D ψ(x) is well-defined.

Proof. For each ϕ ∈ Ea(m1), ψ ∈ Ea(m2), we obtain that

|ϕ(Ax+By)| ≤ ∥ϕ∥m1e
m1∥Ax+By∥BC ≤ ∥ϕ∥m1e

m1∥A∥∥x∥BC
+m1∥B∥∥y∥BC

and

|ψ(Cx+Dy)| ≤ ∥ψ∥m2
em2∥C∥∥x∥BC

+m2∥D∥∥y∥BC .

Therefore, we have∫
B
|ϕ(Ax+By)||ψ(Cx+Dy)|ν(dy)(4.2)

≤ ∥ϕ∥m1∥ψ∥m2e
(m1∥A∥+m2∥C∥)∥x∥BC

∫
B
e(m1∥B∥+m2∥D∥)∥y∥BC ν(dy).

Since by Corollary 2.2 the last integral as in (4.2) is finite, the convolution
ϕ ∗A,B,C,D ψ is well-defined. □
Corollary 4.3. For each ϕ, ψ ∈ Ea, the convolution ϕ∗A,B,C,Dψ is well-defined.

Proof. The proof is immediate by Lemma 4.2. □
Theorem 4.4. The convolution ∗A,B,C,D is separately continuous from Ea×Ea
into Ea.
Proof. For each m,m1,m2 ≥ 0 with m ≥ m1∥A∥ +m2∥C∥ and ϕ ∈ Ea(m1),
ψ ∈ Ea(m2), we have

∥ϕ ∗A,B,C,D ψ∥m

= sup
x∈BC

∣∣∣∣∫
B
ϕ(Ax+By)ψ(Cx+Dy)ν(dy)

∣∣∣∣ e−m∥x∥BC

≤ sup
x∈BC

∥ϕ∥m1∥ψ∥m2e
(m1∥A∥+m2∥C∥−m)∥x∥BC

∫
B
e(m1∥B∥+m2∥D∥)∥y∥BC ν(dy)

≤
(∫

B
e(m1∥B∥+m2∥D∥)∥y∥BC ν(dy)

)
∥ϕ∥m1∥ψ∥m2

as desired. □
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Proposition 4.5. For each ϕξ, ϕη ∈ Ea, the convolution ϕξ ∗A,B,C,D ϕη has
the following form:

ϕξ ∗A,B,C,D ϕη(x) = e⟨x,A
∗ξ+C∗η⟩+⟨DB∗ξ, η⟩+ 1

2 ⟨(BB∗−I)ξ, ξ⟩+ 1
2 ⟨(DD∗−I)η, η⟩.

(4.3)

Proof. The proof is straightforward. In fact, we obtain that

(ϕξ ∗A,B,C,D ϕη)(x) = e−
1
2 ⟨ξ, ξ⟩−

1
2 ⟨η, η⟩+⟨x,A∗ξ+C∗η⟩

∫
B
e⟨y,B

∗ξ+D∗η⟩ν(dy)

= e⟨x,A
∗ξ+C∗η⟩+ 1

2 ⟨B
∗ξ+D∗η,B∗ξ+D∗η⟩− 1

2 ⟨ξ,ξ⟩−
1
2 ⟨η,η⟩

= e⟨x,A
∗ξ+C∗η⟩+⟨DB∗ξ, η⟩+ 1

2 ⟨(BB∗−I)ξ, ξ⟩+ 1
2 ⟨(DD∗−I)η, η⟩

as desired. □

Theorem 4.6. The convolution ∗A,B,C,D is a commutative operation, i.e.,
ϕ ∗A,B,C,D ψ = ψ ∗A,B,C,D ϕ for ϕ, ψ ∈ Ea if and only if

(4.4) A = C, BB∗ = DD∗, DB∗ = BD∗.

Moreover, if A,B,C,D are constants, then (4.4) is equivalent to that A = C,
B2 = D2.

Proof. The proof is straightforward from Theorem 4.4 and Proposition 4.5. □

A relation between the convolution and the generalized Fourier-Gauss trans-
form is studied in Theorem 4.7.

Theorem 4.7. Let Si, Ti, Aj , Bj , Cj , Dj ∈ L(BC,BC), i = 1, 2, 3, j = 1, 2.
Then for any ϕ, ψ ∈ Ea,
(4.5) GS1,T1(ϕ ∗A1,B1,C1,D1 ψ)(x) = (GS2,T2ϕ ∗A2,B2,C2,D2 GS3,T3ψ)(x)

if and only if the following conditions are satisfied:

(i) A1S1 = S2A2, C1S1 = S3C2;
(ii) (A1T1)(A1T1)

∗ +B1B
∗
1 = (S2B2)(S2B2)

∗ + T2T
∗
2 ;

(iii) (C1T1)(C1T1)
∗ +D1D

∗
1 = (S3D2)(S3D2)

∗ + T3T
∗
3 ;

(iv) (C1T1)(A1T1)
∗ +D1B

∗
1 = (S3D2)(S2B2)

∗.

Proof. For each ξ, η ∈ B∗
C, by (4.3) and (3.1) we have

GS1,T1
(ϕξ ∗A1,B1,C1,D1 ϕη)(x)(4.6)

= e⟨x, (A1S1)
∗ξ+(C1S1)

∗η⟩

× e
1
2 [⟨(A1T1(A1T1)

∗+B1B
∗
1−I)ξ,ξ⟩+⟨(C1T1(C1T1)

∗+D1D
∗
1−I)η,η⟩]

× e⟨(C1T1(A1T1)
∗+D1B

∗
1 )ξ, η⟩

and

(GS2,T2ϕξ ∗A2,B2,C2,D2 GS3,T3ϕη)(x)(4.7)

= e⟨x,(S2A2)
∗ξ+(S3C2)

∗η⟩
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× e
1
2 [⟨(S2B2(S2B2)

∗+T2T
∗
2 −I)ξ, ξ⟩+⟨(S3D2(S3D2)

∗+T3T
∗
3 −I)η, η⟩]

× e⟨S3D2(S3B2)
∗ξ, η⟩.

Therefore, by comparing (4.6) and (4.7) the proof is straightforward. □

From Theorem 4.7, the following corollary is immediate.

Corollary 4.8. Let S, T,Aj , Bj , Cj , Dj ∈ L(BC,BC), j = 1, 2. Then for any
ϕ, ψ ∈ Ea,
(4.8) GS,T (ϕ ∗A1,B1,C1,D1 ψ) = (GS,Tϕ) ∗A2,B2,C2,D2 (GS,Tψ)

if and only if the following conditions are satisfied:

(i) A1S = SA2, C1S = SC2;
(ii) (A1T )(A1T )

∗ +B1B
∗
1 = (SB2)(SB2)

∗ + TT ∗;
(iii) (C1T )(C1T )

∗ +D1D
∗
1 = (SD2)(SD2)

∗ + TT ∗;
(iv) (C1T )(A1T )

∗ +D1B
∗
1 = (SD2)(SB2)

∗.

Corollary 4.9. Suppose that ∗Ai,Bi,Ci,Di , i = 1, 2, are commutative opera-
tions. Then for any ϕ, ψ ∈ Ea,

GS,T (ϕ ∗A1,B1,C1,D1 ψ) = (GS,Tϕ) ∗A2,B2,C2,D2 (GS,Tψ)

if and only if the following conditions are satisfied:

(i) A1S = SA2;
(ii) (A1T )(A1T )

∗ +B1B
∗
1 = (SB2)(SB2)

∗ + TT ∗;
(iii) (C1T )(A1T )

∗ +D1B
∗
1 = (SD2)(SB2)

∗.

Proof. Suppose that ∗Ai,Bi,Ci,Di are commutative convolutions. Then by The-
orem 4.6, the conditions (ii) and (iii) in Corollary 4.8 are equivalent, and the
condition (i) in Corollary 4.8 is simplified by (i). Therefore, the proof is imme-
diate form Corollary 4.8. □

Corollary 4.10. Let S, T,Aj , Bj , Cj , Dj be complex numbers. Then (4.8) holds
for any ϕ, ψ ∈ Ea if and only if the following conditions are satisfied:

(i) A1S = A2S, C1S = C2S;
(ii) A2

1T
2 +B2

1 = S2B2
2 + T 2;

(iii) C2
1T

2 +D2
1 = S2D2

2 + T 2;
(iv) A1C1T

2 +B1D1 = S2B2D2.

In particular, we study the case of B2 = D2 = 0 which implies that the
convolution ∗A2,B2,C2,D2 coincides with the composition of pointwise product
and dilations.

Corollary 4.11. Let S, T,Aj , Bj , Cj , Dj be complex numbers and B2 = D2 =
0. Then (4.8) holds for any ϕ, ψ ∈ Ea if and only if the following conditions
are satisfied:

(i) A1S = A2S, C1S = C2S;
(ii) A2

1T
2 +B2

1 = T 2;
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(iii) C2
1T

2 +D2
1 = T 2;

(iv) A1C1T
2 +B1D1 = 0.

Corollary 4.12. Let B2 = D2 = 0 and let S, T ∈ C with S ̸= 0 and T ̸= 0.
Suppose that 0 ̸= B1 ∈ C and A1 = α ∈ C. Then (4.8) holds for any ϕ, ψ ∈ Ea
if and only if

(4.9) A2 = A1 = α, B2
1 = (1−α2)T 2, C2

1 = 1−α2, C2 = C1, D2
1 = α2T 2.

Proof. Equation (4.8) holds for any ϕ, ψ ∈ Ea if and only if the conditions
(i)-(iv) in Corollary 4.11 holds, and then (i) implies that

(4.10) A2 = A1, C2 = C1

since S ̸= 0. By (iii) and (iv), since T ̸= 0, the condition B1 ̸= 0 implies that
C1 ̸= 0 and so (iv), (ii) and (iii) imply that

A1

B1
T 2 = −D1

C1
,

A2
1

B2
1

T 2 =
T 2

B2
1

− 1, T 2 +
D2

1

C2
1

=
T 2

C2
1

.

Therefore, we have

T 2

C2
1

=
D2

1

C2
1

+ T 2 =
A2

1

B2
1

T 4 + T 2 =
α2

B2
1

T 4 + T 2

which implies that

C2
1 =

B2
1

α2T 2 +B2
1

.

On the other hand, by (ii) we have

(4.11) B2
1 =

(
1−A2

1

)
T 2 =

(
1− α2

)
T 2

and so

(4.12) C2
1 =

(
1− α2

)
T 2

α2T 2 + (1− α2)T 2
= 1− α2.

Also, by (iii) and (4.12) we have

(4.13) D2
1 =

(
1− C2

1

)
T 2 = α2T 2.

Hence by (4.10), (4.11), (4.12) and (4.13), we obtain (4.9). The proof of the
converse is straightforward. □

Example 4.13. The convolution ∗ ≡ ∗A,B,C,D with A = B = D = 1√
2
and

C = − 1√
2
has been introduced in [17]. Also, it is obvious that ϕ ∗ 1√

2
,0,− 1√

2
,0 ψ

coincides with ϕ( 1√
2
·)ψ(− 1√

2
·) and then by Corollary 4.11, we have

(4.14) G(ϕ∗ψ)(z) = Gϕ
(
z√
2

)
Gψ

(
− z√

2

)
,
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where G ≡ Gi,1 is the Fourier-Wiener transform, which is one of the main

results in [17] and a special case S = i, T = 1 and α = 1/
√
2 of Corollary 4.12.

Moreover, by Corollary 4.12, for any 0 ̸= S ∈ C and ϕ, ψ ∈ Ea, we have

GS,1(ϕ ∗ ψ)(z) = GS,1ϕ

(
z√
2

)
GS,1ψ

(
− z√

2

)
.

Corollary 4.14. Suppose that S, T,Ai, Bi, Ci, Di, i = 1, 2, are complex num-
bers and the convolutions ∗Ai,Bi,Ci,Di , i = 1, 2, are commutative operations.
Then

GS,T (ϕ ∗A1,B1,C1,D1 ψ) = (GS,Tϕ) ∗A2,B2,C2,D2 (GS,Tψ)

if and only if the following conditions are satisfied:

(i) A1S = A2S;
(ii) A2

1T
2 +B2

1 = B2
2S

2 + T 2;
(iii) A2

1T
2 +B1D1 = S2B2D2.

The proof is immediate from Corollary 4.9.

5. First variation, convolutions and transforms

Let D = LS{ϕξ|ξ ∈ B∗
C}, where LS(X) means the linear span of X. In this

section, we study various relationships among the three concepts of generalized
Fourier-Gauss transform, convolution, and first variation for functionals belong
to D.

Definition 5.1. Let ϕ be a functional defined on BC and w ∈ BC. Then the
first variation δϕ(·|w) of ϕ in the direction w is defined by

δϕ(y|w) = ∂

∂t
ϕ(y + tw)

∣∣∣∣
t=0

, y ∈ BC

whenever it exists.

Theorem 5.2. Let S, T ∈ L(BC,BC) and w ∈ BC. Then for any ϕ ∈ D
(5.15) GS,T (δϕ(y|Sw)) = δ(GS,Tϕ)(y|w), y ∈ BC.

Proof. For y ∈ BC and ξ ∈ B∗
C, we have

GS,T (δϕξ(y|Sw)) = GS,T (⟨Sw, ξ⟩ϕξ)(y) = ⟨Sw, ξ⟩GS,Tϕξ(y),(5.16)

where we use the fact that δϕξ(y|w) = ⟨w, ξ⟩ϕξ(y) for any ξ ∈ B∗
C and w ∈ BC.

On the other hand, by (3.1) we have

(5.17) δ(GS,Tϕξ)(y|w) = ⟨w, S∗ξ⟩ GS,Tϕξ(y) = ⟨Sw, ξ⟩ GS,Tϕξ(y).

Therefore, by (5.16) and (5.17), we have (5.15). □
Theorem 5.3. Let A,B,C,D ∈ L(BC,BC) and w ∈ BC. Then for each
ϕ, ψ ∈ Ea such that ∂

∂tϕ(x+ tw) and ∂
∂tψ(x+ tw) are bounded by an integrable

function in x with respect to the measure ν, we have

(5.18) δ(ϕ∗A,B,C,Dψ)(y|w) =
(
δϕ(·|Aw)∗A,B,C,Dψ+ϕ∗A,B,C,D δψ(·|Cw)

)
(y)



300 MAN KYU IM, UN CIG JI, AND YOON JUNG PARK

for y ∈ BC.

Proof. Let y ∈ BC. Then for each ϕ, ψ ∈ Ea such that ∂
∂tϕ(x + tw) and

∂
∂tψ(x + tw) are bounded by an integrable function in x with respect to the
measure ν, by applying Lebesgue convergence theorem we obtain that

δ(ϕ ∗A,B,C,D ψ)(y|w)

=

∫
B

∂

∂t
[ϕ(A(y + tw) +Bz)ψ(C(y + tw) +Dz)]

∣∣∣∣
t=0

ν(dz)

=

∫
B

∂ϕ(Ay +Bz + tAw)

∂t

∣∣∣∣
t=0

ψ(Cy +Dz)ν(dz)

+

∫
B
ϕ(Ay +Bz)

∂ψ(Cy +Dz + tCw)

∂t

∣∣∣∣
t=0

ν(dz)

= [δϕ(·|Aw) ∗A,B,C,D ψ](y) + [ϕ ∗A,B,C,D δψ(·|Cw)](y),

which implies (5.18). □

In Theorem 5.3, we study the derivation property of the first variation with
respect to the convolutions. In fact, we consider Dwϕ = δϕ(·|w), ϕ ∈ D, then
Dw has the derivative property with respect to the convolution if and only if
w = Aw = Cw.

A relation between the generalized Fourier-Gauss transform and the the
convolution is studied in the following theorem.

Theorem 5.4. We keep notations and assumptions as in Theorem 4.7. Let
w ∈ BC. Then for any ϕ, ψ ∈ D,

δGS1,T1(ϕ ∗A1,B1,C1,D1 ψ)(y|w)
= [GS2,T2δϕ(·|S1A2w) ∗A2,B2,C2,D2 GS3,T3ψ](y)

+ [GS2,T2ϕ ∗A2,B2,C2,D2 GS3,T3δψ(·|S3C2w)](y).

Proof. The proof is straightforward by applying Theorems 4.7, 5.3 and 5.2. □

In the next corollary, we study a intertwining property of the generalized
Fourier-Gauss transform and the first variation. For the more study of the
intertwining property, we refer to [5, 6].

Corollary 5.5. Let A,B ∈ L(BC,BC). Then for any ϕ ∈ D,

(5.19) δ(GA,Bϕ)(y|w) = GA,B(δϕ(y|Aw)), y ∈ BC.

Proof. By Theorem 5.4, we have

δ(GA,Bϕ)(y|w) = δ(ϕ ∗A,B,C,D 1)(y|w) = GA,B(δϕ(y|Aw)), y ∈ BC,

which implies (5.19). □



CONVOLUTIONS AND GENERALIZED FOURIER-GAUSS TRANSFORMS 301

References

[1] R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals,
Duke Math. J. 12 (1945), 485–488.

[2] R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math.

Soc. 2 (1951), 914–924.
[3] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals,

Duke Math. J. 12 (1945), 489–507.
[4] R. H. Cameron and D. A. Storvick, An L2 analytic Fourier-Feynman transform, Michi-

gan Math. J. 23 (1976), no. 1, 1–30.
[5] D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications

to Cauchy problems, Nagoya Math. J. 147 (1997), 1–23.
[6] , Transformation groups on white noise functionals and their applications, Appl.

Math. Optim. 37 (1998), no. 2, 205–223.
[7] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123–181.
[8] T. Hida, Analysis of Brownian Functionals, Carleton Mathematical Lecture Notes, No.

13. Carleton Univ., Ottawa, Ont., 1975.

[9] T. Hida, H. H. Kuo, and N. Obata, Transformations for white noise functionals, J.
Funct. Anal. 111 (1993), no. 2, 259–277.

[10] T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convo-
lution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661–673.

[11] U. C. Ji and N. Obata, Quantum white noise calculus, Non-commutativity, infinite-
dimensionality and probability at the crossroads, 143–191, QP–PQ: Quantum Probab.
White Noise Anal., 16, World Sci. Publ., River Edge, NJ, 2002.

[12] , Bogoliubov transformations in terms of generalized Fourier–Gauss transforma-
tions, preprint, 2008.

[13] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, Vol.
463. Springer-Verlag, Berlin-New York, 1975.

[14] , White Noise Distribution Theory, CRC Press, Boca Raton, FL, 1996.
[15] Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct.

Anal. 47 (1982), no. 2, 153–164.
[16] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, 1577.

Springer-Verlag, Berlin, 1994.
[17] J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731–738.
[18] I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky

Mountain J. Math. 25 (1995), no. 4, 1577–1587.

Man Kyu Im

Department of Mathematics
Hannam University
Daejeon 306-791, Korea
E-mail address: mki@hannam.ac.kr

Un Cig Ji
Department of Mathematics

Research institute of Mathematical Finance
Chungbuk National University
Cheongju 361-763, Korea
E-mail address: uncigji@chungbuk.ac.kr



302 MAN KYU IM, UN CIG JI, AND YOON JUNG PARK

Yoon Jung Park
Department of Mathematics
Chungbuk National University
Cheongju 361-763, Korea

E-mail address: yjpark@chungbuk.ac.kr


