DOI QR코드

DOI QR Code

Suppressive Effect of Green Tea Seed Coat Ethyl Acetate Fraction on Inflammation and Its Mechanism in RAW264.7 Macrophage Cell

RAW264.7 Macrophage Cell에서 녹차씨껍질 에틸아세테이트 분획의 염증억제 효과 및 기전 연구

  • Noh, Kyung-Hee (School of Foods and Life Science, Institute of Basic Sciences, Inje University) ;
  • Jang, Ji-Hyun (School of Foods and Life Science, Institute of Basic Sciences, Inje University) ;
  • Min, Kwan-Hee (School of Foods and Life Science, Institute of Basic Sciences, Inje University) ;
  • Chinzorig, Radnaabazar (School of Foods and Life Science, Institute of Basic Sciences, Inje University) ;
  • Lee, Mi-Ock (Dept. of Korean Food & Culinary Arts, Youngsan University) ;
  • Song, Young-Sun (School of Foods and Life Science, Institute of Basic Sciences, Inje University)
  • 노경희 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 장지현 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 민관희 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 친조리그 라드나바자르 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 이미옥 (영산대학교 한국식품조리학과) ;
  • 송영선 (인제대학교 식품생명과학부, 기초과학연구소)
  • Received : 2011.02.22
  • Accepted : 2011.03.04
  • Published : 2011.05.31

Abstract

Green tea seed coat (GTSC) was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether (PE), ethyl acetate (EtOAC) and butanol (BuOH). The EtOAC fraction showed the highest level in total phenol contents and the lowest level in nitric oxide (NO) production in LPS-stimulated RAW264.7 macrophage cell. Thus, this study was carried out to investigate the anti-inflammatory and its mechanisms of GTSC EtOAC fraction in LPS-stimulated RAW264.7 macrophage cell. GTSC EtOAC fraction contained EGC ($1146.48{\pm}11.01\;{\mu}g/g$), tannic acid ($966.99{\pm}32.24\;{\mu}g/g$), EC ($70.88{\pm}4.39\;{\mu}g/g$), gallic acid ($947.61{\pm}1.03\;{\mu}g/g$), caffeic acid ($37.69{\pm}1.46\;{\mu}g/g$), ECG ($35.46{\pm}3.19\;{\mu}g/g$), and EGCG ($15.53{\pm}0.09\;{\mu}g/g$) when analyzed by HPLC. NO production was significantly (p<0.05) suppressed in a dose-dependent manner with an $IC_{50}$ of $80.11\;{\mu}g$/mL. Also prostaglandin $E_2$ level was also inhibited in a dose-dependent manner. Moreover, iNOS protein expression was suppressed in dose-dependent manner but COX-2 gene expression was not affected. Total antioxidant capacity and glutathione (GSH) levels were enhanced more than the LPS-control. Expressions of antioxidative enzymes including catalase, GSH-reductase and Mn-SOD were elevated compared to LPS-control. Nuclear p65 level was decreased in the GTSC EtOAC fraction in a dose-dependent manner. These results indicate that GTSC EtOAC fraction inhibit oxidative stress and inflammatory responses through elevated GSH levels, antioxidative enzymes expressions and suppression of iNOS expression via NF-${\kappa}B$ down-regulation.

본 연구는 녹차씨껍질 분획 추출물 중 염증 저해능이 강력한 EtOAC분획을 선정하여 대식세포주인 RAW264.7 macrophage cell에서 항염증효과의 기전을 생화학적, 분자학적수준에서 분석하고자 하였다. 녹차씨껍질 추출물 100 mg당 총 페놀함량은 EtOAC분획에서 가장 높은 수준이었으며 EtOH추출물>PE분획>BuOH분획과 $H_2O$분획의 순으로 나타났다. 또한 EtOAC분획의 NO 억제능이 가장 강한 것으로 나타나, EtOAC분획의 polyphenol을 분석한 결과 EGC ($1146.5{\pm}11.01\;{\mu}g/g$)> tannic acid($967.0{\pm}32.24\;{\mu}g/g$)> EC ($70.9{\pm}4.39\;{\mu}g/g$)> gallic acid($947.6{\pm}1.03\;{\mu}g/g$)> caffeic acid($37.7{\pm}1.46\;{\mu}g/g$)> ECG($35.5{\pm}3.19\;{\mu}g/g$)> EGCG($15.5{\pm}0.09\;{\mu}g/g$)의 순으로 나타났다. 녹차씨껍질 EtOAC분획이 RAW264.7 macrophage cell에서 LPS 처리에 의한 산화적 스트레스로 발생되는 NO 생성을 농도 의존적으로 감소시키며($IC_{50}$: $80.11\;{\mu}g/mL$) $PGE_2$의 생성을 억제하였다. 염증생성 전사인자인 iNOS의 유전자 발현은 농도 의존적으로 억제시켰으나 COX-2의 단백질 발현에는 영향을 미치지 않았다. 녹차씨껍질 EtOAC분획은 총 항산화능과 GSH 수준을 증가시켜 산화적 스트레스를 경감시키는 역할을 하며 항산화효소계인 catalase, GSH-red 및 Mn-SOD 활성의 단백질 발현을 증가시키는 것으로 나타났다. 핵에서의 p65 농도는 대조군에 비해 녹차씨껍질 EtOAC분획을 처리한 군에서 현저하게 낮은 것으로 나타났다. 이상의 결과에서, 녹차씨껍질 EtOAC분획은 NF-${\kappa}B$ 활성을 억제함으로써 iNOS 단백질 발현을 억제하여 NO의 생성을 감소시키고 총 항산화능과 GSH 수준을 증가시키며, 항산화 효소계를 활성화시켜 세포내 산화적 스트레스를 감소시킴으로써 LPS 자극에 의한 염증반응을 지연하거나 억제하는 것으로 사료된다.

Keywords

References

  1. Seo HS, Chung BH, Cho YG. 2008. Antioxidant and anticancer effects of Agrimony (Agrimonia pilosa L.) and Chinese lizardtail (Saururus chinesis Baill). Korean J Medicinal Crop Sci 16: 139-143.
  2. Mariathasan S, Monack DM. 2007. Inflammasome adaptors and sensors; intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31-40. https://doi.org/10.1038/nri1997
  3. Zedler S, Faist E. 2006. The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care 12: 595-601. https://doi.org/10.1097/MCC.0b013e3280106806
  4. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  5. Cheon MS, Yoon T, Choi G, Kim SJ, Lee AY, Moon BC, Choo BK, Kim HK. 2009. Comparative study of extracts from rhubarb on inflammatory activity in RAW 264.7 cells. Korean J Medicinal Crop Sci 17: 109-114.
  6. Coker RK, Laurent GJ. 1998. Pulmonary fibrosis: cytokines in the balance. Eur Respir J 11: 1218-1221. https://doi.org/10.1183/09031936.98.11061218
  7. Choi C, Cho H, Park J, Cho C, Song Y. 2003. Suppressive effects of genistein on oxidative stress and NF-${\kappa}B$ activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem 67: 1916-1922. https://doi.org/10.1271/bbb.67.1916
  8. Lawrence T, Gilroy DW, Colville-Nash PR. 2001. Possible new role for NF-${\kappa}B$ in the resolution of inflammation. Nat Med 7: 1291-1297. https://doi.org/10.1038/nm1201-1291
  9. Riehemann K, Behnke B, Schulze-Osthoff K. 1999. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-${\kappa}B$. FEBS Lett 442: 89-94. https://doi.org/10.1016/S0014-5793(98)01622-6
  10. Allenm R, Tresini M. 2000. Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499. https://doi.org/10.1016/S0891-5849(99)00242-7
  11. Park JS, Rho HS, Kim DH, Chang IS. 2006. Enzyme preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54: 2951-2956. https://doi.org/10.1021/jf052900a
  12. Rah HH, Baik SO, Han SB, Bock JY. 1992. Chemical compositions of the seed of Korean green tea plant (Camellia sinecis L.). J Korean Agric Chem Soc 35: 272-275.
  13. Yosioka I, Nishimura T, Matsuda A, Kitagawa I. 1970. Saponin and sapogenol. II. Seeds sapogenols of Thea sinensis L. theasapogenol A. Chem Pharm Bull 18: 1621-1632. https://doi.org/10.1248/cpb.18.1621
  14. Yoon WH, Choi JH, Lee KH, Kim CH. 2005. Antimicrobial and antitumor activities of seed extracts of Camellia sinensis L. Korean J Food Sci Technol 37: 108-112.
  15. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. 2004. Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J Medicinal Crop Sci 12: 191-202.
  16. Bernas T, Dobrucki J. 2002. Mitochondrial and nonmitochondrial reduction of MTT: interation of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47: 236-242. https://doi.org/10.1002/cyto.10080
  17. Green LC, Wagner DA, Glogowski J. 1982. Analysis of nitrate, nitrite, and [$15^N$] nitrate in biological fluids. Anal Biochem 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  18. Erel O. 2004. A novel automated method to measure total antioxidant response against potent free radical reaction. Clin Biochem 37: 112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  19. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidaized glutathione: applications to mammalian blood and other tissue. Anal Biochem 27: 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  20. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  21. Lee SE, Seong NS, Bang JK, Kang SW, Lee SW, Chung TY. 2003. Inhibitory effect against angiotensin converting enzyme and antioxidant activity of Panax ginseng C.A. meyer extract. Korean J Medicinal Crop Sci 11: 236-245.
  22. Oh YJ, Seo HR, Choi YM, Jung DS. 2010. Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino. Korean J Medicinal Crop Sci 18: 373-378.
  23. Kim CM, Park YK. 2009. The effects of different extracts of Ostericum koreanum on the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. Kor J Herbology 24: 169-178.
  24. Lee HB, Kim EK, Park SJ, Bang SG, Kim TG, Chung DW. 2010. Isolation and characterization of nicotiflorin obtained by enzymatic hydrolysis of two precursors in tea seed extract. J Agric Food Chem 5: 4808-4813.
  25. Lim HA, Jang CH, Kim JH, Kim JR, Ha YR, Song YS, Kim YK, Kim JS. 2006. Antiproliferative and anticarcinogenic enzyme-inducing activities of green tea seed extract in hepatoma cells. Food Sci Biotechnol 15: 914-919.
  26. Ippouchi K, Itou H, Azuma K, Higashio H. 2002. Effect of naturally occurring organosulfur compounds on nitric oxide production in liposaccharide-activated macrophages. Life Sci 71: 411-419. https://doi.org/10.1016/S0024-3205(02)01685-5
  27. Wang J, Mazza G. 2002. Inhibitory effects of anthocyanines and other phenolic compounds on nitric oxide production in LPS/IFN-$\gamma$-activated RAW 264.7 macrophages. J Agric Food Chem 50: 850-857. https://doi.org/10.1021/jf010976a
  28. Kang JL, Lee K, Castronova V. 2000. Nitric oxide up-regulates DNA-bind activity of nuclear factor-kappa B in macrophages stimulated with silica and inflammatory stimulants. Mol Coll Biochem 215: 1-9. https://doi.org/10.1023/A:1026581301366
  29. Yen GC, Lai HH. 2002. Inhibitory effects of isoflavones on nitric oxide- or peroxynitrite-mediated DNA damage in RAW 264.7 cells and $\phi$X174DNA. Food Chem Toxicol 40: 1433-1440. https://doi.org/10.1016/S0278-6915(02)00076-5
  30. Park JY, Cho HY, Kim JK, Noh KH, Yang JR, Ahn JM, Lee MO, Song YS. 2005. Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NFkB activity mediated by suppressed oxidative stress in RAW 264.7 macrophages. Clinica Chimica Acta 351: 185-196. https://doi.org/10.1016/j.cccn.2004.09.013
  31. Park CM, Park JY, Noh KH, Shin JH, Song YS. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NFκB modulation in RAW 264.7 cells. J Ethnopharamacol 133: 834-842. https://doi.org/10.1016/j.jep.2010.11.015
  32. Kim TH, Ko SS, Park C, Park SE, Hong SH, Kim BW, Choi YH. 2010. Anti-inflammatory effects of Nerium indicum ethanol extracts through suppression of NF-kappa B activation. J Life Sci 20: 1221-1229. https://doi.org/10.5352/JLS.2010.20.8.1221
  33. Lee HH, Park C, Kim MJ, Seo MJ, Choi SH, Jeong YK, Choi YH. 2010. Inhibition of cyclooxygenase-2 activity and prostaglandin E2 production through down-regulation of NF-kB activity by the extracts of fermented beans. J Life Sci 20: 388-395. https://doi.org/10.5352/JLS.2010.20.3.388
  34. Balzary RW, Cocks TM. 2006. Lipopolysaccharide induces epithelium- and prostaglandin E(2)-dependent relaxation of mouse isolated trachea through activation of cyclooxygenase (COX)-1 and COX-2. J Pharmacol Exp Ther 317: 806-812. https://doi.org/10.1124/jpet.105.097634
  35. Lee EM, Choi YJ, Lee J, Ku L, Kim KH, Choi JS, Lim SJ. 2006. $\alpha$-Tocopheryl succinate, in contrast to $\alpha$-tocopherol and $\alpha$-tocopheryl acetate, inhibits prostaglandin $E_2$ production in human lung epithelial cells. Carcinogenesis 27: 2308-2315. https://doi.org/10.1093/carcin/bgl073
  36. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. 2002. Camosol, an antioxidant in rosemary, surppresses inducible nitric oxide synthase through down-regulating nuclear factor- kB in mouse macrophages. Carcinogenesis 23: 983-991. https://doi.org/10.1093/carcin/23.6.983
  37. Alvarez E, Leiro J, Orallo F. 2002. Effect of (-)epigallocathechin- 3-gallate on respiratory burst of rat macrophages. Int Immunopharmacol 2: 849-855. https://doi.org/10.1016/S1567-5769(02)00032-2
  38. Kim AJ, Yuh CS, Lee PJ, Choi MK, Kim SY. 2003. Mineral contents and anti-inflammatory effect of ostrich extract combined with Korean herb medicine. Food Sci Biotechnol 12: 617-620.
  39. Botting RM. 2006. Inhitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol 5: S113-124.
  40. Wu DD, Mennerich K, Amdt K, Sugiyama N, Ozaki K, Schwarz J, Wei H, Wu NH, Bishoporic HD. 2009. Comparison of microsomal prostaglandin E synthase-1 deletion and COX-2 inhibition in acute cardiac ischemia in mice. Prostaglandins Other Lipid Mediat 90: 21-25. https://doi.org/10.1016/j.prostaglandins.2009.06.006
  41. Hayashi E, Hayashi M, Yamazoe H. 1990. Pharmacological action of tea extracts on the central nervous system in mice. Oyo Yakuri 40: 351-356.
  42. Kim MJ, Choi JH, Yang JA, Kim SY, Kim JH, Lee JH, Kim JK, Rhee SJ. 2002. Effects of green tea catechin on enzyme activities and gene expression of antioxidative system in rat liver exposed to microwaves. Nutr Res 22: 733-744. https://doi.org/10.1016/S0271-5317(02)00365-2
  43. Cho SY, Oh YJ, Park JY, Lee MK, Kim MJ. 2003. Effect of dandelion leaf extracts (Taraxacum officinale) on hepatic antioxidative system in rats fed high cholesterol diet. J Korean Soc Food Sci Nutr 32: 458-463. https://doi.org/10.3746/jkfn.2003.32.3.458
  44. Nakayama T, Yoshizaki A, Izumida S, Suehiro T, Miura S, Uemura T, Yakata Y, Shichijo K, Yamashita S, Sekin I. 2007. Expression of interleukin-11 (IL-11) and IL-11 receptor alpha in human gastric carcinoma and IL-11 upregulates the invasive activity of human gastric carcinoma cells. Int J Oncol 30: 825-833.
  45. McCord JM, Fridovich I. 1969. Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055.
  46. Park KY, Yoo CG, Kim YW, Han SK, Shim YS. 1995. Superoxide dismutase gene expressiion induced by lipopolysaccharide in alveolar macrophage of rat. Tuberc Respir Dis 42: 522-534. https://doi.org/10.4046/trd.1995.42.4.522
  47. Geeta S, Ravindra N, Kiran DG. 1991. Effect of ethanol on Cd-induced lipid peroxidation and antioxidant enzymes in rat liver. Biochem Pharmacol 42: S9-S16. https://doi.org/10.1016/0006-2952(91)90386-J
  48. Pompella A, Visvikis A, Paolicchi A, Tata de V, Casini FA. 2003. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66: 1499-1503. https://doi.org/10.1016/S0006-2952(03)00504-5
  49. Grimm S, Baeuerle PA. 1993. The inducible transcription factor NF${\kappa}B$: structure-function relationship of its protein subunits. Biochem J 290: 297-308. https://doi.org/10.1042/bj2900297
  50. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. 1991. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88: 1747-1754. https://doi.org/10.1172/JCI115493
  51. Henkel T, Machleidt T, Alkalay I. 1993. Rapid proteolysis of I${\kappa}B$-$\alpha$ is necessary for activation of transcription factor NF${\kappa}B$. Nature 365: 182-185. https://doi.org/10.1038/365182a0
  52. Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO. 2006. Tanshinone IIA inhibits LPS-induced NF-kB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 542: 1-7. https://doi.org/10.1016/j.ejphar.2006.04.044

Cited by

  1. Antioxidant and Neuroprotective Effects of Green Tea Seed Shell Ethanol Extracts vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.958
  2. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions ofDoenjangin LPS-stimulated RAW 264.7 macrophages vol.9, pp.6, 2015, https://doi.org/10.4162/nrp.2015.9.6.569
  3. Antioxidant activities and determination of phenolic compounds isolated from oriental plums (Soldam, Oishiwase and Formosa) vol.6, pp.4, 2012, https://doi.org/10.4162/nrp.2012.6.4.277
  4. Whitening Effect of Green Tea Seed Shell Ethanol Extracts vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1470
  5. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.236
  6. Improvement of Anti-Inflammation Activity of Gardeniae fructus Extract by the Treatment of β-Glucosidase vol.44, pp.3, 2012, https://doi.org/10.9721/KJFST.2012.44.3.331
  7. Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1450
  8. Anti-Inflammatory Effects of Picrasma Quassioides (D.DON) BENN Leaves Extracts vol.23, pp.5, 2013, https://doi.org/10.5352/JLS.2013.23.5.629
  9. Anti-inflammatory activities of Olea europaea extracts from Jeju Island on LPS-induced RAW 264.7 cells vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.557
  10. 2,4-Dinitrochlorobenzene으로 유도된 BALB/c 마우스에서 Black currant seed oil의 아토피성 피부염 억제 효과 vol.29, pp.1, 2015, https://doi.org/10.15188/kjopp.2015.02.29.1.33
  11. 녹차씨 주정추출물의 카페인 함량 평가와 고지방식이 비만유도 C57BL/6 마우스와 3T3-L1 지방전구세포의 항비만효과 vol.30, pp.2, 2011, https://doi.org/10.15188/kjopp.2016.04.30.2.88
  12. 염생식물 가는갯는쟁이 용매 추출물의 항염증활성 vol.27, pp.2, 2011, https://doi.org/10.5352/jls.2017.27.2.187
  13. RAW 264.7을 이용한 정금나무 열매(Vaccinum oldhami fruit)의 항염증 효과 vol.27, pp.4, 2011, https://doi.org/10.5352/jls.2017.27.4.417
  14. LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 vol.24, pp.8, 2011, https://doi.org/10.11002/kjfp.2017.24.8.1149
  15. 가미귀비탕 탕액과 시판제제의 성분 및 생리활성 비교 vol.32, pp.5, 2011, https://doi.org/10.15188/kjopp.2018.10.32.5.333
  16. 추출 용매에 따른 Lactobacillus plantarum 발효 우슬의 항염증 효과 증진 vol.30, pp.2, 2011, https://doi.org/10.14478/ace.2018.1102