DOI QR코드

DOI QR Code

Effect of Green Tea Extract on Cisplatin- or Doxorubicin-Induced Cytotoxicity in Human Lung Cancer Cell Lines

사람 폐암 세포주에서 시스플라틴이나 독소루비신의 세포독성에 미치는 녹차 추출물의 영향

  • 이병래 (조선대학교 의과대학 생화학교실) ;
  • 박재윤 (조선대학교 의과대학 생화학교실) ;
  • 박평심 (조선대학교 의학연구원)
  • Received : 2011.02.15
  • Accepted : 2011.05.09
  • Published : 2011.05.31

Abstract

Tea extract (TE) has been shown to have anti-tumor properties in a wide variety of experimental systems. We evaluated green tea extract (GTE) as a biochemical modulator for the antitumor activity of cisplatin and doxorubicin in the treatment of human lung cancer A549 cells. Cells were grown in RPMI-1640 medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum and two antibiotics (100 units/mL penicillin and $100\;{\mu}g$/mL streptomycin). Two types of TE, epigallocatechin galate (EGCG) and GTE, were used in this experiment. The cells were seeded at $1{\times}10^4$ cells/well in the RPMI-1640 media with or without TE ($100\;{\mu}g$/mL) and then treated with different concentrations of doxorubicin ($0{\sim}14\;{\mu}g$/mL) or cisplatin ($0{\sim}35\;{\mu}g$/mL). After incubation in 5% $CO_2$ at $37^{\circ}C$ for 24 hr, cell viability was determined with a MTT assay. We used a Western blot to detect the influence of EGCG and GTE on the expression of p53 and caspase-3 genes in the A549 cells. A549 cell viability decreased to 15% with a $10\;{\mu}g$/mL concentration of cisplatin, and to 21% with a $8\;{\mu}g$/mL concentration of doxorubicin, as measured with the MTT assay. However, pre-treatment of the cells with EGCG ($100\;{\mu}g$/mL) or GTE ($100\;{\mu}g$/mL) resulted in decreased cell viability with $6\;{\mu}g$/mL of cisplatin and $4\;{\mu}g$/mL of doxorubicin. There was no apparent change in cell viability between EGCG or GTE administration in cisplatin- or doxorubicin-induced cytotoxicity in A549 cells. The levels of p53 and caspase-3 in the A549 cells increased with both EGCG and GTE treatment. We found that GTE could potentially affect cisplatin- or doxorubicin-induced cytotoxicity of A549 cells, which may be useful in the chemotreatment of cancer.

항암 화학요법제의 항암작용을 증가시키거나, 부작용을 감소시켜 항암 치료를 효과적으로 할 수 있는 항암치료 보조제(modulator)에 대한 개발의 일환으로 녹차 추출물의 이용가능성을 추정하기 위하여 사람 폐암 세포주인 A549 세포를 배양하여 시스플라틴과 독소루비신의 항암성에 미치는 녹차 추출물과 EGCG의 영향을 비교 관찰하였다. A549 세포에 독성을 나타나는 농도는 녹차 추출물 $400\;{\mu}g$/mL, EGCG $300\;{\mu}g$/mL, 시스플라틴 $10\;{\mu}g$/mL 및 독소루비신 $8\;{\mu}g$/mL로, 녹차 추출물이 세포독성을 나타내는 농도는 시스플라틴이나 독소루비신에 비하면 낮았다. A549 세포에서 시스플라틴 $10\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되었고, EGCG나 녹차 추출물 $100\;{\mu}g$/mL를 첨가하면 시스플라틴 $6\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되어 EGCG나 녹차 추출물 첨가로 시스플라틴의 세포독성이 증가되었다. A549 세포에서 독소루비신 $8\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되었고, EGCG나 녹차 추출물 $100\;{\mu}g$/mL를 첨가하면 독소루비신 $4\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되어 EGCG나 녹차 추출물 첨가로 독소루비신의 세포독성이 증가되었다. A549 세포에서 녹차추출물 투여 후 p53 및 caspase 3에 대한 Western blot을 시행한 결과 p53및 caspase-3의 유전자 발현이 증가되었다. 이상의 실험결과 녹차추출물은 광범위 항암제 시스플라틴이나 독소루비신의 세포독성을 증강시키는 효과가 있고, 녹차추출물에 의한 p53이나 caspase-3 등과 같은 세포자살유도 단백질의 발현 증가는 녹차추출물에 의한 세포독성 증강효과와 연관이 있을 것으로 추측된다. 녹차추출물의 시스플라틴이나 독소루비신 세포독성 증강효과는 항암화학요법제의 용량을 늘리지 않고 항암력을 증대시킬 수 있기 때문에 항암화학요법 보조제로서 이용될 수 있는 가능성이 높은 것으로 생각되며, 이러한 효과를 규명하기 위한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Graham HN. 1992. Green tea composition, consumption, andpolyphenol chemistry. Prev Med 21: 334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  2. Kanadaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, HuangYT, Lee MT. 2005. The antitumor activities of flavonoids.In Vivo 19: 895-909.
  3. Lin JK. 2002. Cancer chemoprevention by tea polyphenolsthrough modulating signal transduction pathways. ArchPharm Res 25: 561-571. https://doi.org/10.1007/BF02976924
  4. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L.2005. Dietary polyphenols and the prevention of diseases.Crit Rev Food Sci Nutr 45: 287-306. https://doi.org/10.1080/1040869059096
  5. Sorenson S, Glimelius B, Nygren P. 2001. A systematic overview of chemotherapy effects in non-small cell lung cancer. Acta Oncol 40: 327-339. https://doi.org/10.1080/02841860151116402
  6. Matsuyama R, Reddy S, Smith TJ. 2006. Why do patients choose chemotherapy near the end of life? A review of the perspective of those facing death from cancer. J Clin Oncol 24: 3490-3496. https://doi.org/10.1200/JCO.2005.03.6236
  7. Hogberg T, Glimelius B, Nygren P. 2001. A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol 40: 340-360. https://doi.org/10.1080/02841860151116420
  8. Crown JP. 2001. The platinum agents: a role in breast cancer treatment? Senmin Oncol 28: 28-37.
  9. Comella P, Abate G, Di Finizio G, Daponte A, Zarrilli D. 1990. Treatment of resistant non-Hodgkin's lymphomas with cisplatin, etoposide, and bleomycin. Cancer Chemother Pharmacol 26: 306-309. https://doi.org/10.1007/BF02897236
  10. Marzano C, Bettio F, Baccichetti F, Trevisan A, Giovagnini L, Fregona D. 2004. Antitumor activity of a new platinum (II) complex with low nephrotoxicity and genotoxicity. Chem Biol Interact 148: 37-48. https://doi.org/10.1016/j.cbi.2004.04.002
  11. Cersosimo RJ. 1993. Hepatotoxicity associated with cisplatin chemotherapy. Ann Pharmacother 27: 438-441. https://doi.org/10.1177/106002809302700408
  12. Kartalou M, Essigmann JM. 2001. Mechanisms of resistance to cisplatin. Mutat Res 478: 23-43. https://doi.org/10.1016/S0027-5107(01)00141-5
  13. Samad A, Sultana Y, Aqil M. 2007. Liposomal drug delivery systems: an update review. Curr Drug Deliv 4: 297-305. https://doi.org/10.2174/156720107782151269
  14. Di Stefano G, Fiume L, Baglioni M, Bolondi L, Busi C, Chieco P, Kratz F, Manaresi F, Pariali M. 2006. A conjugate of doxorubicin with lactosaminated albumin enhances the drug concentrations in all the forms of rat hepatocellular carcinomas independently of their differentiation grade. Liver Int 26: 726-733. https://doi.org/10.1111/j.1478-3231.2006.01289.x
  15. Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B, Faden AI. 2004. BOK and NOXA are essential mediators of p53-dependent apoptosis. J Biol Chem 279: 28367-28374. https://doi.org/10.1074/jbc.M313526200
  16. Sladowski D, Steer SJ, Clothier RH, Balls M. 1993. An improved MTT assay. J Immunol Methods 157: 203-207. https://doi.org/10.1016/0022-1759(93)90088-O
  17. Lambert JD, Elias RJ. 2010. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501: 65-72. https://doi.org/10.1016/j.abb.2010.06.013
  18. Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M. 2005. Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19: 807-816.
  19. Chan MM, Soprano KJ, Weinstein K, Fong D. 2006. Epigal-locatechin- 3-gallate delivers hydrogen peroxide to induce death of ovarian cancer cells and enhances their cisplatin susceptibility. J Cell Physiol 207: 389-396. https://doi.org/10.1002/jcp.20569
  20. Sadzuka Y, Sugiyama T, Suzuki T, Sonobe T. 2001. Enhancement of the activity of doxorubicin by inhibition of glutamate transporter. Toxicol Lett 23: 159-167.
  21. Wetzel CC, Berberich SJ. 2001. p53 binds to cisplatin-damaged DNA. Biochim Biophys Acta 1517: 392-397. https://doi.org/10.1016/S0167-4781(00)00305-5
  22. Gupta S, Hussain T, Mukhtar H. 2003. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cells cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410: 177-185. https://doi.org/10.1016/S0003-9861(02)00668-9

Cited by

  1. Effect of DMfreeⓇ(GTE) on Gene Array Profile of M. leprae Infected Mesenchymal Stem Cells vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.267
  2. Immature Citrus Fruit Extracts Enhance the Apoptosis Inducing Potential of Cisplatin in Human Malignant Melanoma A375 Cells via Regulation of Nitric Oxide and Inhibitor of Apoptosis Family (IAP) vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.454
  3. On-Chip Cytotoxicity Testing of Nepali Chiya Extract vol.6, pp.4, 2015, https://doi.org/10.1115/1.4033194