DOI QR코드

DOI QR Code

Charcoal Properties and Temperature Change of a Kiln's Inner and Outer Walls in Carbonization Process Using an Improved Kiln

개량형탄화로를 이용한 제탄과정 중 탄화로 내·외벽 온도변화 및 목탄 특성

  • Kwon, Gu-Joong (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kwon, Sung-Min (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Hwang, Won-Joung (Div. of Environmental Wooden Material Engineering, Dept. of Green Resources Utilization, Korea Forest Research Institute) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 권구중 (강원대학교 산림환경과학대학) ;
  • 권성민 (강원대학교 산림환경과학대학) ;
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 황원중 (국립산림과학원 녹색자원이용부 환경소재공학과) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2011.03.17
  • Accepted : 2011.05.02
  • Published : 2011.05.25

Abstract

The study was performed to investigate the characteristics of charcoal and temperature change of a kiln's inner and outer walls in carbonization process using improved kiln. In this kiln system, carbonization process was completed in eight days. In the kiln, the ignition temperature was kept about $720^{\circ}C$. And then the temperature were increased gradually prior to be refined. Finally, the temperature in refining process was reached to maximum point, $1,000^{\circ}C$. In the chimney, the temperature was increased gradually from $90^{\circ}C$ at ignition to $750^{\circ}C$ at refining. The temperature change of the kiln wall resembles a temperature change progress curve during a carbonization process. The highest temperature of the kiln wall that appeared by a carbonization process was around $500^{\circ}C$. As a result of having measured an inner wall and the outer wall of the kiln using an infrared thermography camera, it was judged with there being considerable latent heat on kiln wall and ceiling. Fixed carbon contented of charcoal was 85.9~89.9%. Refining degree of charcoal, hardness, calorific value and pH were l, 12, 7,047~7,456 kcal/kg, 9.0~9.9, respectively. The yield of wood charcoal was 13.8%, and compared to conventional kiln's yield increased 1.5%.

본 연구는 개량형 탄화로를 이용하여 제탄과정 중 탄화로 내 외벽체의 온도변화를 측정하고, 제탄된 목탄의 특성을 조사하였다. 공시탄화로의 탄화과정은 8일정도 소요되었다. 탄재탄화시 탄화로 내부온도는 $720^{\circ}C$ 정도 였고, 정련단계에 이르기까지 탄화로 내부온도는 점점 증가하여 정련단계에서는 $1,000^{\circ}C$ 이상의 고온에 달하였다. 연통부는 착화시 $90^{\circ}C$였고, 서서히 증가되어 정련단계에서는 $750^{\circ}C$까지 상승하였다. 이 때 탄화로 벽체의 온도변화는 제탄과정 중의 탄화로 내부의 온도변화 경과곡선과 비슷한 경향을 보여주었다. 제탄과정에서 나타난 탄화로 벽체의 최고 온도는 $500^{\circ}C$ 정도였다. 적외선 열화상카메라를 이용하여 제탄전 탄화로의 내.외벽체의 온도분포를 측정한 결과, 출탄 후 시간이 다소 경과되어도 상당한 양의 잠열이 탄화로 벽체와 천장에서 감지되었다. 출탄된 목탄의 고정탄소은 85.9~89.9%였다. 정련도는 1, 경도는 12, 발열량은 7,047~7,456 kcal/kg, pH는 9.0~9.9였다. 목탄의 수탄율은 13.8% 정도로 기존의 탄화로에 얻어진 수탄율 9.8~12.3%에 비해 1.5% 정도 향상되었다.

Keywords

References

  1. 국립산림과학원. 2007. 목탄의 규격과 품질. 국립산림과학원 고시 제2007-8호.
  2. 권구중, 박형수, 이성재, 권성민, 이귀현, 김남훈. 2008. 숙련공에 의한 목탄제조과정 중 전통식 탄화로 내의 온도변화(I). 산림바이오에너지 27(1): 30-35.
  3. 권성민, 김남훈. 2007. 목재의 탄화기구 해석(II). 목재공학 35(3): 45-52.
  4. 김남훈, 황원중, 권성민, 권구중, 이성재. 2006. 제조온도에 따른 굴참나무 목탄의 해부학적 특성. 목재공학34(4): 1-8.
  5. 김병로, 공석우. 1999. 미이용 목질폐잔재의 탄화 이용 개발(I) - 수종의 간벌재 탄화와 탄화물의 특성 -. 목재공학 27(2): 70-77.
  6. 조남석, 최태호, 김홍은, 이석호, 이충구. 2009. 목질계 폐바이오메스의 발효열 이용 열교환기의 개발. 목재공학 37(1): 94-104.
  7. 조태수, 이오규, 최준원, 변재경. 2008. 신갈나무 목탄의 카드뮴(Cd) 이온 흡착 특성. 목재공학 36(3): 93-100.
  8. 조태수, 최준원, 이오규. 2007. 탄화온도가 목탄의 물리, 화학적 특성에 미치는 영향. 목재공학 35(3): 53-60.
  9. 이동영, 김병로. 2010. 국내 시판용 목탄의 흡착특성(1). 목재공학 38(1): 27-35.
  10. 이충구, 이세균, 이계복, 이석호, 유인선. 2005. 폐바이오 매스를 이용한 폐열회수 열교환기에 관한 연구. 에너지공학 14(4): 248-258.
  11. 황원중, 권구중, 이성재, 박형수, 김남훈. 2002. 전통식 탄화로에서 제탄된 목탄의 해부학적 특성. 임산에너지 21(1): 49-55.
  12. Brunner, P. H. and P. V. Roberts. 1980. The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 18: 217-224. https://doi.org/10.1016/0008-6223(80)90064-0
  13. 岸本定吉. 1990. 木炭と木酢液の新用途開發硏究成果集. -炭化技術-. 木材炭化成分多用途利用技術硏究組合: 9-26.