DOI QR코드

DOI QR Code

Silorane계 복합레진의 중합수축응력의 평가

Evaluation of polymerization shrinkage stress in silorane-based composites

  • 류승지 (조선대학교 치과대학 치과보존학교실) ;
  • 전지훈 (조선대학교 치과대학 치과보존학교실) ;
  • 민정범 (조선대학교 치과대학 치과보존학교실)
  • Ryu, Seung-Ji (Department of Conservative Dentistry, Chosun University School of Dentistry) ;
  • Cheon, Ji-Hoon (Department of Conservative Dentistry, Chosun University School of Dentistry) ;
  • Min, Jeong-Bum (Department of Conservative Dentistry, Chosun University School of Dentistry)
  • 투고 : 2011.03.06
  • 심사 : 2011.04.29
  • 발행 : 2011.05.31

초록

연구목적: 새로운 silorane 복합레진의 중합수축응력을 기존의 methacrylate 계열의 복합레진과 비교 분석하는 것이다. 연구 재료 및 방법: Z250, P60, P90 각 군당 10개의 시편을 준비하였다. 시편에 스트레인 게이지를 부착하고 각 재료의 제조사에서 추천하는 접착제 도포 후 10초간, 수복 재료 적용 후 40초간 할로겐 광조사기로 광중합한 뒤 중합수축응력을 측정 하였다. 외경 10 mm, 내경 7 mm, 높이 3 mm의 아크릴릭 주형을 준비하고 주형의 내면은 5초간 sandblasting 처리한 후, 30초간 35% 인산으로 산부식 시행하였다. 주형의 외면은 Cyanoacrylate adhesive (SOKKI)로 스트레인 게이지를 부착하였다. 주형의 내면과 복합 레진을 접착하기 위한 접착제로 methacrylate 기질의 복합 레진 2종은 Single Bond (3M ESPE)를, silorane 기질의 복합레진은 P90 Adhesive system (3M ESPE)을 적용하였고 할로겐 광조사기를 사용하여 10초간 광중합하였다. 시편에 부착된 스트레인 게이지를 TML data logger에 연결시키고 광중합 전의 초기값을 설정한다. 중합시간은 모든 군의 에너지 총량을 동일하게 하기 위해 400 mW/$cm^2$의 광강도로 설정하여 40초간 광중합하였다. 광중합 시점부터 1초 간격으로 800초 간의 스트레인 값을 측정하였고 스트레인 값은 Hooke's law를 이용하여 각 시점의 수축응력으로 환산하여 기록하였다. 결과: 1. 모든 군에서 광중합 직후에는 일시적으로 팽창하였다가 급속한 수축률을 보였고 시간이 지날수록 수축률이 감소하는 경향을 보이다가 200초 이후에는 수축률이 완만해지는 양상을 보였다. 2. 모든 군에서 수축응력이 계속 증가하였고, silorane 기질의 복합레진 P90이 methacrylate 기질의 복합레진 Z250, P60 보다 낮은 수축응력 값을 보였다(p < 0.05). 3. Methacrylate 기질의 복합레진인 Z250과 P60 두가지 재료간 수축응력에는 통계적으로 유의한 차이가 없었다(p > 0.05). 결론: Silorane 기질 복합레진의 사용은 methacrylate 기질 복합레진보다 중합수축응력이 더 작을 것으로 기대되지만 silorane 기질 복합레진의 탄성계수에 있어서 다소 불리한 특성이 보고되는 바, 임상적 적용에 앞서 이에 대한 충분한 고찰 및 추가적인 연구가 더 필요할 것으로 사료된다.

Objectives: The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin. Materials and Methods: The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (p = 0.05). Results: The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (p < 0.05). The shrinkage stress between methacrylate-based composite resin groups did not show significant difference (p > 0.05). Conclusions: Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.

키워드

참고문헌

  1. Kwon YC, Lee IB. Polymerization shringage of kinetics of silorane-based composites. J Kor Acad Cons Dent 2010;35:51-58. https://doi.org/10.5395/JKACD.2010.35.1.051
  2. Peutzfeld A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105:97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  3. Bragg RR, Ferracane FL. Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med 2004;15:176-184. https://doi.org/10.1177/154411130401500306
  4. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 1997;25:435-440. https://doi.org/10.1016/S0300-5712(96)00063-2
  5. Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater 2005;21:1150-1157. https://doi.org/10.1016/j.dental.2005.02.004
  6. Song YX, Inoue K. Linear shrinkage of photo-activated composite resins during setting. J Oral Rehabil 2001;28:335-341. https://doi.org/10.1046/j.1365-2842.2001.00661.x
  7. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil 2005;32:304-314. https://doi.org/10.1111/j.1365-2842.2004.01414.x
  8. Dauvillier BS, Aarnts MP, Feilzer AJ. Developments in shrinkage control of adhesive restoratives. J Esthet Dent 2000;12:291-299. https://doi.org/10.1111/j.1708-8240.2000.tb00238.x
  9. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent 1996;21:17-24.
  10. Park J, Chang J, Ferracane J, Lee IB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 2008;24:1501-1505. https://doi.org/10.1016/j.dental.2008.03.013
  11. Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 2007;23:288-295. https://doi.org/10.1016/j.dental.2006.01.025
  12. Weinmann W, Thalacker C, Guggenberg R. Siloranes in dental composites. Dent Mater 2005;21:68-74. https://doi.org/10.1016/j.dental.2004.10.007
  13. Stansbury JW, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater 2005;21:56-67. https://doi.org/10.1016/j.dental.2004.10.006
  14. Papadogiannis D, Kakaboura A, Palaghias G, Eliades G. Setting characteristics and cavity adaptation of lowshrinking resin composites. Dent Mater 2009;25:1509-1516. https://doi.org/10.1016/j.dental.2009.06.022
  15. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature changes in Silorane-, Ormocer-, and Dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent 2009;21:122-132. https://doi.org/10.1111/j.1708-8240.2009.00244.x
  16. Palin WM, Fleming GJP, Nathwani H, Burke FJT, Randall RC. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel lowhrink dental composites. Dent Mater 2005;21:324-335. https://doi.org/10.1016/j.dental.2004.05.005
  17. Sakaguchi RL, Sasik CT, Bunczak MA. Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent 1991;19:312-316. https://doi.org/10.1016/0300-5712(91)90081-9
  18. Sakaguchi RL, Douglas WH. Strain gauge measurement of polymerization shrinkage. J Dent Res 1989;68:977.
  19. Sakaguchi RL, Douglas WH, Peters MC. Curing light performance and polymerization fo composite restorative materials. J Dent 1992;20:183-188. https://doi.org/10.1016/0300-5712(92)90136-Z
  20. Lindeburg MR. Civil engineering reference manual, 5th ed. Belmont, CA: Professional; 1989. p12-27.
  21. Peutzfeld A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105:97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  22. Chappelow CC, Pinzino CS, Power MD, Eick JD. Photocured epoxy/SOC matrix resin systems for dental composites. Polymer Reprints 1997;38:90-91.
  23. Cadenaro M, Biasotto M, Scuor N, Breschi L, Davidson CL, Lenarda R. Assessment of polymerization contraction stress of three composite resins. Dent Mater 2008;24:681-685. https://doi.org/10.1016/j.dental.2007.06.031
  24. Braga RR, Hilton TJ, Ferracane JL. Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. J Am Dent Assoc 2003;134:721-728.
  25. Seo DG, Min SH, Lee IB. Effect of instrument compliance on the polymerization shrinkage stress measurements of dental resin composites. J Kor Acad Cons Dent 2009;34:145-153. https://doi.org/10.5395/JKACD.2009.34.2.145
  26. Boaro LC, Goncalves F, Guimarães TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater 2010;26:1144-1150. https://doi.org/10.1016/j.dental.2010.08.003
  27. Condon JR, Ferracane JL. Assessing the effect of composite formulation on polymerization stress. J Am Dent Assoc 2000;131:497-503. https://doi.org/10.14219/jada.archive.2000.0207
  28. Watts DC, Vogel K, Marouf AS. Shrinkage stress reduction in resin-composites of increasing particle concentration. J Dent Res 2002;81(Special Issue A):Abstract #2444,p308. https://doi.org/10.1177/154405910208100504
  29. Obici AC, Sinhoreti MAC, de Goes MF, Consai S, Sobrinho LC. Effect of the photo-activation method on polymerization shrinkage of restorative composites. Oper Dent 2002;27:192-198.
  30. Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 2005;21:36-42. https://doi.org/10.1016/j.dental.2004.10.004

피인용 문헌

  1. Behavior of Polymerization Shrinkage Stress of Methacrylate-based Composite and Silorane-based Composite during Dental Restoration vol.28, pp.1, 2015, https://doi.org/10.7234/composres.2015.28.1.006
  2. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies vol.40, pp.1, 2015, https://doi.org/10.5395/rde.2015.40.1.23