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INVOLUTORY AND S+1-POTENCY OF LINEAR

COMBINATIONS OF A TRIPOTENT MATRIX AND AN

ARBITRARY MATRIX†

CHANGJIANG BU∗ AND YIXIN ZHOU

Abstract. Let A1 and A2 be n × n nonzero complex matrices, denote a
linear combination of the two matrices by A = c1A1 + c2A2, where c1, c2
are nonzero complex numbers. In this paper, we research the problem
of the linear combinations in the general case. We give a sufficient and
necessary condition for A is an involutive matrix and s+1−potent matrix,
respectively, where A1 is a tripotent matrix, with A1A2 = A2A1. Then,
using the results, we also give the sufficient and necessary conditions for
the involutory of the linear combination A, where A1 is a tripotent matrix,
anti-idempotent matrix, and involutive matrix, respectively, and A2 is a
tripotent matrix, idempotent matrix, and involutive matrix, respectively,
with A1A2 = A2A1..

AMS Mathematics Subject Classification : 15A27, 15A57, 62H10.
Key words and phrases : Tripotent matrix, idempotent matrix, involutive
matrix, s+ 1−potent matrix, linear combination.

1. Introduction

The symbols C, C\{0} and Cn×n denote the sets of complex numbers, nonzero
complex numbers and n × n complex matrices, respectively. Let In and Xt be
n × n identity matrix and the transpose of X. Let c1, c2 ∈ C\{0}, nonzero
matrices A1, A2 ∈ Cn×n, A is a linear combination of A1 and A2, i.e. A =
c1A1 + c2A2.

Idempotent matrix, tripotent matrix and involutive matrix have important
applications in statistical theory: if A is an n×n real symmetric matrix, X is an
n× 1 real vector and X satisfied the multivariate normal distribution Nn(0, I),
where I denotes the identity matrix, then a sufficient and necessary condition
for the quadratic form XtAX (1) to be distributed as a chi-square is A2 = A;
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(2) to be distributed as a difference of two independent chi-square variables is
A3 = A (see[1]-[4]). Consequently, the idempotency (or tripotency) of the linear
combination A = c1A1+ c2A2, where A1, A2 are two commuting real symmetric
idempotent (or tripotent) matrices, is related to the linear combination of two
quadratic form XtA1X, XtA2X, it is a chi-square distribution (or as difference
of two independent chi-square variables), whereXtA1X andXtA2X are satisfied
chi-square distribution (or a difference of two independent chi-square variables).
Obviously, if A is an involutive matrix, then there exist two idempotent matrices
P1 and P2 such that A = P1 −P2, I = P1 +P2 and P1P2 = 0 (see[5]). However,
the matrices, which neither real nor symmetric, are also used in many branches of

applied sciences. For example the matrix

(
0 −i
i 0

)
, which is a member of the

class of matrices known as the Pauli spin matrices and the Dirac spin matrices is
neither real nor symmetric but involutive, and they are widely used in quantum
mechanics (see[6]-[10]). The problem of the linear combinations has applications
in control theory, too. Let us consider a singular control linear system: Eẋ =
Ax+Bu, where x ∈ Rn is the descriptor variable, u ∈ Rm is the control input,
and E, A ∈ Rn×n, B ∈ Rn×m are constant matrices, E is a singular matrix. The
singular system Eẋ = Ax + Bu satisfies the regularity condition if there exists
λ ∈ C such that det(λE + A) 6= 0 (see[11]-[12]). Actually, this problem, when
λ 6= 0, is the invertibility of the linear combination P = c1E + c2A. Therefore,
it is significant to research on this kind of issues.

In 2000, J.K. Baksalary and O.M. Baksalary gave the sufficient and necessary
conditions of the idempotency of linear combinations of two idempotent matrices
(see[13]); In 2002, J.K. Baksalary, O.M. Baksalary and G.P.H. Styan gave the
sufficient and necessary conditions of the idempotency of linear combinations
of an idempotent matrix and a tripotent matrix (see[14]); In 2007, [15] give
the idempotency of the linear combination A = c1A1 + c2A2 + c3A3, where
A2

i = Ai, and AiAj = AjAi, i 6= j, i, j = 1, 2, 3; In 2008, M. Sarduvan and H.

Özdemir gave the sufficient and necessary conditions of tripotency, idempotency
and involutory of the linear combinations A = c1A1 + c2A2, where A1 and A2

are two commuting tripotent, idempotent or involutive matrices, respectively,
i.e. (1) the sufficient and necessary conditions of A is a tripotent or idempotent
matrix when A1 and A2 are commuting involutive matrices, (2) the sufficient and
necessary conditions of A is an involutive matrix when A1 and A2 are commuting
tripotent or idempotent matrices (see[16]); In 2009, H. Özdemir, M. Sarduvan,

A.Y. Özban and N. Güler gave the sufficient and necessary conditions of the
idempotency and tripotency of linear combinations of two commuting tripotent
matrices (see[17]).

In this paper, we research the problem of the linear combinations A = c1A1+
c2A2 in the more general cases. We give, when A1 is a tripotent matrix, A =
c1A1 + c2A2 is an involutive or an s + 1−potent matrix, with A1A2 = A2A1,
all the forms of the arbitrary matrix A2, and when A2

1 = −A1 or A2
1 = I, we

also give all the forms of A2, respectively. From the forms of A2, we give the
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sufficient and necessary conditions for the involutory of the linear combination
A, when A2 is a tripotent matrix, idempotent matrix, or involutive matrix, with
A1A2 = A2A1. Then, Theorem 2.1, 2.2, 2.3 and 2.5 in [16] can be obtained for
the special cases of this paper’s results.

2. Some Lemmas

Lemma 1. ([18]) Let A ∈ Cn×n be a tripotent matrix. Then there exists a
nonsingular matrix P ∈ Cn×n such that A = P (Ip ⊕ −Iq ⊕ O)P−1, where
p+ q = rankA.

Lemma 2. ([19]) Let A ∈ Cn×n be an involutive matrix. Then there exists a
nonsingular matrix P ∈ Cn×n such that A = P (Ir ⊕−Is)P

−1, where r+ s = n.

Lemma 3. ([18]) Let A ∈ Cn×n be an idempotent matrix. Then there exists a
nonsingular matrix P ∈ Cn×n such that A = P (Ir ⊕O)P−1, where r = rankA.

3. Main Results

In this section, we give all the forms of the arbitrary matrix A2, when A =
c1A1 + c2A2 is an involutive or s+1−potent matrix, with A1A2 = A2A1, where
A1 is a tripotent matrix.

3.1.On involutory of linear combinations of a tripoent matrix and an
arbitrary matrix.

Theorem 1. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A3
1 = A1,

A1A2 = A2A1, A = c1A1 + c2A2, where c1, c2 ∈ C\{0}. Then the sufficient
and necessary conditions for A2 = I is existing a nonsingular matrix Q ∈ Cn×n

such that

A1 = Q(Ip ⊕−Iq ⊕O)Q−1,

A2 = Q[(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)⊕ (
1 + c1
c2

Im⊕ −1 + c1
c2

It)⊕ (
1

c2
Ih⊕ −1

c2
Il)]Q

−1,

where p + q = rankA1, r + s = p, m + t = q, h + l = n − p − q, and
p, q, r, s, m, t, h, l are nonnegative integers.

Proof. The sufficiency is obvious. Now we only prove the necessity.
Since A3

1 = A1, from Lemma 1, there exists a nonsingular matrix P ∈ Cn×n

such that

A1 = P (Ip ⊕−Iq ⊕O)P−1,

where p+ q = rankA1.
And from A1A2 = A2A1. Let

A2 = P (X1 ⊕X2 ⊕X3)P
−1,

where X1 ∈ Cp×p, X2 ∈ Cq×q, X3 ∈ C(n−p−q)×(n−p−q).
Then

A = P [(c1Ip + c2X1)⊕ (−c1Iq + c2X2)⊕ c2X3]P
−1.
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From A2 = I, we have

(c1Ip + c2X1)
2 = I, (−c1Iq + c2X2)

2 = I and (c2X3)
2 = I.. (1)

From Lemma 2 and (1), there exist nonsingular matrices Q1 ∈ Cp×p, Q2 ∈
Cq×q and Q3 ∈ C(n−p−q)×(n−p−q) such that

c1Ip + c2X1 = Q1(Ir ⊕−Is)Q
−1
1 ,

−c1Iq + c2X2 = Q2(Im ⊕−It)Q
−1
2 ,

c2X3 = Q3(Ih ⊕−Il)Q
−1
3 ,

i.e.

X1 = Q1(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)Q
−1
1 ,

X2 = Q2(
1 + c1
c2

Im ⊕ −1 + c1
c2

It)Q
−1
2 ,

X3 = Q3(
1

c2
Ih ⊕− 1

c2
Il)Q

−1
3 ,

where r + s = p, m+ t = q, h+ l = n− p− q.
Therefore,

A2 = P (X1 ⊕X2 ⊕X3)P
−1

= P [Q1(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)Q
−1
1 ⊕Q2(

1 + c1
c2

Im ⊕ −1 + c1
c2

It)Q
−1
2

⊕ Q3(
1

c2
Ih ⊕ −1

c2
Il)Q

−1
3 ]P−1

= P (Q1 ⊕Q2 ⊕Q3)[(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)⊕ (
1 + c1
c2

Im ⊕ −1 + c1
c2

It)

⊕ (
1

c2
Ih ⊕ −1

c2
Il)](Q

−1
1 ⊕Q−1

2 ⊕Q−1
3 )P−1.

Let Q = P (Q1 ⊕Q2 ⊕Q3). Then

A2 = Q[(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)⊕ (
1 + c1
c2

Im⊕ −1 + c1
c2

It)⊕ (
1

c2
Ih⊕ −1

c2
Il)]Q

−1,

and

A1 = P (Q1 ⊕Q2 ⊕Q3)(Ip ⊕−Iq ⊕O)(Q−1
1 ⊕Q−1

2 ⊕Q−1
3 )P−1

= Q(Ip ⊕−Iq ⊕O)Q−1.

¤

Theorem 2.3 in [16] gave the sufficient and necessary conditions of involutory
of two commuting tripotent matrices. Let A3

2 = A2. Then Theorem 2.3 in [16]
can be obtained from the Theorem 1 of this paper, see Corollary 1.
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Corollary 1. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A1 6= ±A2, A
3
1 =

A1, A3
2 = A2, A1A2 = A2A1, A = c1A1 + c2A2, where c1, c2 ∈ C\{0}. Then

we have the following situations for which A is an involutive matrix:
(a) (c1, c2) = (1, 1) or (c1, c2) = (−1,−1), and A2

1 + 2A1A2 + A2
2 = I, A2

1 6= I,
A2

2 6= I;
(b) (c1, c2) = (1,−1) or (c1, c2) = (−1, 1), and A2

1 − 2A1A2 + A2
2 = I, A2

1 6= I,
A2

2 6= I;
(c) (c1, c2) = (2, 1) or (c1, c2) = (−2,−1), and 4A2

1 + 4A1A2 +A2
2 = I, A2

1 6= I;
(d) (c1, c2) = (2,−1) or (c1, c2) = (−2, 1), and 4A2

1 − 4A1A2 +A2
2 = I, A2

1 6= I;
(e) (c1, c2) = (1, 2) or (c1, c2) = (−1,−2), and A2

1 + 4A1A2 + 4A2
2 = I, A2

2 6= I;
(f) (c1, c2) = (1,−2) or (c1, c2) = (−1, 2), and A2

1 − 4A1A2 + 4A2
2 = I, A2

2 6= I.

Proof. The sufficiency is obvious. Now we only prove the necessity.
From Theorem 1, there exists a nonsingular matrix Q ∈ Cn×n such that

A1 = Q(Ip ⊕−Iq ⊕O)Q−1,

A2 = Q[(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)⊕ (
1 + c1
c2

Im⊕ −1 + c1
c2

It)⊕ (
1

c2
Ih⊕ −1

c2
Il)]Q

−1,

where p + q = rankA1, r + s = p, m + t = q, h + l = n − p − q, and
p, q, r, s, m, t, h, l are nonnegative integers.

From A3
2 = A2, we know the following relations:

(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)
3 = (

1− c1
c2

Ir ⊕ −1− c1
c2

Is),

(
1 + c1
c2

Im ⊕ −1 + c1
c2

It)
3 = (

1 + c1
c2

Im ⊕ −1 + c1
c2

It),

(
1

c2
Ih ⊕ −1

c2
Il)

3 = (
1

c2
Ih ⊕ −1

c2
Il).

Case 1.

(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)
3 = (

1− c1
c2

Ir ⊕ −1− c1
c2

Is).

If r = 0, s = p 6= 0,

c1 − c2 = −1 or c1 + c2 = −1 or c1 = −1. (2)

If s = 0, r = p 6= 0,

c1 − c2 = 1 or c1 + c2 = 1 or c1 = 1. (3)

If p = 0,

c1, c2 ∈ C\{0}. (4)

Case 2.

(
1 + c1
c2

Im ⊕ −1 + c1
c2

It)
3 = (

1 + c1
c2

Im ⊕ −1 + c1
c2

It).
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If m = 0, t = q 6= 0,

c1 − c2 = 1 or c1 + c2 = 1 or c1 = 1. (5)

If t = 0, m = q 6= 0,

c1 − c2 = −1 or c1 + c2 = −1 or c1 = −1. (6)

If q = 0,

c1, c2 ∈ C\{0}. (7)

Case 3.

(
1

c2
Ih ⊕ −1

c2
Il)

3 = (
1

c2
Ih ⊕ −1

c2
Il).

If h = 0, l = n− p− q 6= 0,

c2 = ±1. (8)

If l = 0, h = n− p− q 6= 0,

c2 = ±1. (9)

If h 6= 0, l 6= 0,

c2 = ±1. (10)

If n− p− q = 0,

c1, c2 ∈ C\{0}. (11)

Combination of all the results of Case 1, 2 and 3.
Combination of (2), (6) and (8), we get

c1 = −2, c2 = 1, 4A2
1 − 4A1A2 +A2

2 = I, A2
1 6= I,

or

c1 = −1, c2 = 1, A2
1 − 2A1A2 +A2

2 = I, A2
1 6= I, A2

2 6= I,

or

c1 = −2, c2 = −1, 4A2
1 + 4A1A2 +A2

2 = I, A2
1 6= I,

or

c1 = −1, c2 = −1, A2
1 + 2A1A2 +A2

2 = I, A2
1 6= I, A2

2 6= I.

In the similar way, combination of (2)− (11), we get the results (a)− (f). ¤

Theorem 2.1 in [16] gave the sufficient and necessary conditions of tripotency
of two commuting involutive matrices. Let A2

2 = I. Then Theorem 2..1 in [16]
can be obtained from the Theorem 1 of this paper, too, see Corollary 2.

Corollary 2. Let A1, A2 ∈ Cn×n be two nonzero matrices, A1 6= ±A2, and A3
1 =

A1, A2
2 = I, A1A2 = A2A1, A = c1A1 + c2A2, where c1, c2 ∈ C\{0}. Then we

have the following situations for which A is an involutive matrix:
(a) (c1, c2) = (2,−1) or (c1, c2) = (−2, 1), and A2

1 = A1A2;
(b) (c1, c2) = (2, 1) or (c1, c2) = (−2,−1), and A2

1 = −A1A2.
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Proof. The proof is similar to Corollary 1. ¤

In the Theorem 1, A1 = Q(Ip ⊕ −Iq ⊕ O)Q−1, A1 is degenerated anti-
idempotent matrix, when p = 0, i.e. A2

1 = −A1 and A1A2 = A2A1. We
get the form of arbitrary matrix A2, when A is an involutive matrix.

Theorem 2. Let A1, A2 ∈ Cn×n be two nonzero matrices, A2
1 = −A1, A1A2 =

A2A1, A = c1A1+c2A2, where c1, c2 ∈ C\{0}. Then the sufficient and necessary
conditions for A2 = I is existing a nonsingular matrix Q ∈ Cn×n such that

A1 = Q(−Iq ⊕O)Q−1,

A2 = Q[(
1 + c1
c2

Im ⊕ −1 + c1
c2

It)⊕ (
1

c2
Ih ⊕ −1

c2
Il)]Q

−1,

where q = rankA1, m + t = q, h + l = n − q, and m, t, h, l are nonnegative
integers.

Proof. The proof is similar to Theorem 1. ¤

Theorem 2.5 in [16] gave the sufficient and necessary conditions of involutory
of two commuting idempotent matrices. Let A2

2 = A2. Then Theorem 2.5 in
[16] can be obtained from the Theorem 2 of this paper, see Corollary 3.

Corollary 3. Let A1, A2 ∈ Cn×n be two nonzero matrices, A1 6= ±A2, and A2
1 =

−A1, A2
2 = A2, A1A2 = A2A1, A = c1A1 + c2A2, where c1, c2 ∈ C\{0}. Then

we have the following situations for which A is an involutive matrix:
(a) (c1, c2) = (1,−1) or (c1, c2) = (−1, 1), and −A1 +A2 = I;
(b) (c1, c2) = (1, 2) or (c1, c2) = (−1,−2), and A1 = −I;
(c) (c1, c2) = (2, 1) or (c1, c2) = (−2,−1), and A2 = I.

Proof. The proof is similar to Corollary 1. ¤

In the Theorem 1, A1 = Q(Ip⊕−Iq⊕O)Q−1, A1 is degenerated an involutive
matrix, when p + q = n, i.e. A2

1 = I and A1A2 = A2A1. We get the form of
arbitrary matrix A2, when A is an involutive matrix.

Theorem 3. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A2
1 = I, A1A2 =

A2A1, A = c1A1+c2A2, where c1, c2 ∈ C\{0}. Then the sufficient and necessary
conditions for A2 = I holds is existing a nonsingular matrix Q ∈ Cn×n such that

A1 = Q(Ip ⊕−Iq)Q
−1,

A2 = Q[(
1− c1
c2

Ir ⊕ −1− c1
c2

Is)⊕ (
1 + c1
c2

Im ⊕ −1 + c1
c2

It)]Q
−1,

where p + q = n, r + s = p, m + t = q, and p, q, r, s, m, t are nonnegative
integers.

Proof. The proof is similar to Theorem 1. ¤
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Theorem 2.2 in [16] gave the sufficient and necessary conditions of idempo-
tency of two commuting involutive matrices. Let A2

2 = A2. Then the Theorem
2.2 in [16] can be obtained from the Theorem 3 of this paper, see Corollary 4.

Corollary 4. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A1 6= ±A2, A
2
1 =

I, A2
2 = A2, A1A2 = A2A1, A = c1A1 + c2A2, where c1, c2 ∈ C\{0}. Then we

have the following situations for which A is an involutive matrix:
(a) (c1, c2) = (1, 2) or (c1, c2) = (−1,−2), and A1A2 +A2 = O;
(b) (c1, c2) = (1,−2) or (c1, c2) = (−1, 2), and A1A2 −A2 = O..

Proof. The proof is similar to Corollary 1. ¤

If the matrix A1 in Theorem 1 is taken as s + 1−potent matrix, and let A2

be an arbitrary matrix, the following results are obtained.

3.2.On s+1-potency of linear combinations of a tripoent matrix and
an arbitrary matrix.

Theorem 4. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A3
1 = A1,

A1A2 = A2A1, A = c1A1+c2A2, where c1, c2 ∈ C\{0}. Then the sufficient and
necessary conditions for As+1 = A is existing a nonsingular matrix Q ∈ Cn×n

such that

A1 = Q(Ip ⊕−Iq ⊕O)Q−1,

A2 = Q(
X1 − c1Ip

c2
⊕ X2 + c1Iq

c2
⊕ X3

c2
)Q−1,

where p + q = rankA1, X1 = diag(β1, . . . , βp), X2 = diag(βp+1, . . . , βp+q),
X3 = diag(βp+q+1, . . . , βn), βi ∈ {0} ∪ V (i = 1, . . . , n, V = {x|xs = 1}), and
p, q are nonnegative integers, s is a positive integer.

Proof. The sufficiency is obvious. Now we only prove the necessity.
Since A3

1 = A1, from Lemma 1, there exists a nonsingular matrix P ∈ Cn×n

such that

A1 = P (Ip ⊕−Iq ⊕O)P−1,

where p+ q = rankA1.
And from A1A2 = A2A1. Let

A2 = P (Y1 ⊕ Y2 ⊕ Y3)P
−1,

where Y1 ∈ Cp×p, Y2 ∈ Cq×q, Y3 ∈ C(n−p−q)×(n−p−q).
Then

A = P [(c1Ip + c2Y1)⊕ (−c1Iq + c2Y2)⊕ c2Y3]P
−1.

From As+1 = A, we have

(c1Ip + c2Y1)
s+1 = (c1Ip + c2Y1), (−c1Iq + c2Y2)

s+1 = (−c1Iq + c2Y2)

and

(c2Y3)
s+1 = (c2Y3).
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An s+1−potent matrix is diagonalizable, so, from (c1Ip+c2Y1)
s+1 = (c1Ip+

c2Y1), there exists a nonsingular matrix Q1 ∈ Cp×p such that

c1Ip + c2Y1 = Q1(β1 ⊕ · · · ⊕ βp)Q
−1
1 .

LetX1 = diag(β1, . . . , βp), where βi ∈ {0}∪V (i = 1, . . . , p, V = {x|xs = 1}).
Then

Y1 = Q1(
X1 − c1Ip

c2
)Q−1

1 .

In the same way, there exist nonsingular matrices Q2 ∈ Cq×q, Q3 ∈ C(n−p−q)×(n−p−q)

such that

Y2 = Q2(
X2 + c1Iq

c2
)Q−1

2 , Y3 = Q3(
X3

c2
)Q−1

3 ,

where X2 = diag(βp+1, . . . , βp+q), X3 = diag(βp+q+1, . . . , βn), βi ∈ {0} ∪ V
(i = p+ 1, . . . , n, V = {x|xs = 1}).

Therefore,

A2 = P (Q1 ⊕Q2 ⊕Q3)(
X1 − c1Ip

c2
⊕ X2 + c1Iq

c2
⊕ X3

c2
)(Q−1

1 ⊕Q−1
2 ⊕Q−1

3 )P−1.

Let Q = P (Q1 ⊕Q2 ⊕Q3). Then

A2 = Q(
X1 − c1Ip

c2
⊕ X2 + c1Iq

c2
⊕ X3

c2
)Q−1,

and

A1 = P (Q1 ⊕Q2 ⊕Q3)(Ip ⊕−Iq ⊕O)(Q−1
1 ⊕Q−1

2 ⊕Q−1
3 )P−1

= Q(Ip ⊕−Iq ⊕O)Q−1.

¤

In the Theorem 4, A1 = Q(Ip ⊕ −Iq ⊕ O)Q−1, A1 is degenerated an anti-
idempotent matrix, when p = 0, i.e. A2

1 = −A1 and A1A2 = A2A1. We get the
form of arbitrary matrix A2, when A is an s+ 1−potent matrix.

Theorem 5. Let A1, A2 ∈ Cn×n be two nonzero matrices, A2
1 = −A1, A1A2 =

A2A1, A = c1A1+c2A2, where c1, c2 ∈ C\{0}. Then the sufficient and necessary
conditions for As+1 = A is existing a nonsingular matrix Q ∈ Cn×n such that

A1 = Q(−Iq ⊕O)Q−1,

A2 = Q(
X1 + c1Iq

c2
⊕ X2

c2
)Q−1,

where q = rankA1, X1 = diag(β1, . . . , βq), X2 = diag(βq+1, . . . , βn), βi ∈
{0} ∪ V (i = 1, . . . , n, V = {x|xs = 1}), and s is a positive integer.

Proof. The proof is similar to Theorem 4. ¤

In the Theorem 4, A1 = Q(Ip⊕−Iq⊕O)Q−1, A1 is degenerated an involutive
matrix, when p + q = n, i.e. A2

1 = I and A1A2 = A2A1. We get the form of
arbitrary matrix A2, when A is an s+ 1−potent matrix.
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Theorem 6. Let A1, A2 ∈ Cn×n be two nonzero matrices, and A2
1 = I, A1A2 =

A2A1, A = c1A1+c2A2, where c1, c2 ∈ C\{0}. Then the sufficient and necessary
conditions for As+1 = A is existing a nonsingular matrix Q ∈ Cn×n such that

A1 = Q(Ip ⊕−Iq)Q
−1,

A2 = Q(
X1 − c1Ip

c2
⊕ X2 + c1Iq

c2
)Q−1,

where p+ q = rankA1 = n, X1 = diag(β1, . . . , βp), X2 = diag(βp+1, . . . , βp+q),
βi ∈ {0} ∪ V (i = 1, . . . , n, V = {x|xs = 1}), and p, q are nonnegative integers,
s is a positive integer.

Proof. The proof is similar to Theorem 4. ¤

Remark. Let A = c1A1 + · · · + ckAk, Ai ∈ Cn×n, ci ∈ C\{0}, i = 1, 2, · · · , k
(k ≥ 2), where A2

i = Ai or A
3
i = Ai or A

s+1
i = Ai or A

2
i = I (i ∈ {1, 2, · · · , k −

1}), and AiAj = AjAi, i 6= j; i, j = 1, · · · , k, Ak is an arbitrary matrix. With
the method in this paper, we can get all the forms of the arbitrary matrix Ak,
when A2 = A or A3 = A or As+1 = A or A2 = I.
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