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OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF SECOND
ORDER NONLINEAR DIFFERENTIAL INEQUALITY WITH
PERTURBATION
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ABSTRACT. In this paper,we study the oscillatory and asymptotic behavior
of a class of second order nonlinear differential inequality with perturbation
and establish several theorems by using classification and analysis, which
develop and generalize some known results.
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1. Introduction

The oscillation for the following second order nonlinear differential equation
with damping

(a(t)y(@(t)a' () + p(t)a' () + q() f(x(1)) =0, ' = %

has been studied in [1,2], and several theorems about the oscillation have been
established. In this paper, we discuss the oscillatory and asymptotic behavior
of the following second order nonlinear differential inequality with perturbation

2(t){(a()P(x(t)2' (1) + QL x(t)) + P(t,x(t), 2'(t))} < 0. (1)

Under some conditions, by using classification and analysis, we establish four
oscillatory and asymptotic theorems, which generalize and develop the results
of [1-3].

For Ig.(1), assume that:

(A1) a: [to, +00) = (0,400) is continuously differentiable;

(A2) ¢ : R — R is continuously differentiable, and #(u) > 0 for u # 0;
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(A3) @ :[to,+00)x R — Ris continuous function, and there exist continuous
function ¢ and continuously differentiable function f: where ¢ : [ty, +00) —
(0,400), f: R = R, uf(u) >0, f'(u) >0, u # 0, such that Q(¢t,z)/f(z) >
q(t), = #0;

(Ag) P:ltg,+00)x R? — R is continuous function, and there exists continu-
ous function p : [tg, +00) — R such that x(t) P(¢, z(t), ' (t)) > x(¢)p(t)z'(t), © #
0.

In this paper, we assume that each solution z of Iq.(1) can be extended to
[to, +00). A solution is said to be regular if there exists ¢ on arbitrary interval
[T, 4+00), such that z(t) # 0. A regular solution is said to be oscillatory, if it has
arbitrarily large zeros; otherwise it is said to be nonoscillatory. A nonoscillatory
solution z of Iq.(1) is said to be weakly oscillatory if z'(t) changes sign for
arbitrarily large values of ¢. Iq.(1) is called oscillatory if all its regular solutions
are oscillatory.

With respect to their asymptotic behavior, all the regular solutions of Iq.(1)
can be divided into the following classes:

St = {z = z(t) : regular solution of Iq.(1): there exists ¢, > to such that
z(t)z'(t) > 0 for t > ¢, };

S~ = {z = z(t) : regular solution of Iq.(1): there exists ¢, > t, such that
x(t)a'(t) <0 for t > t,};

SO = {x = z(t) : regular solution of Iq.(1): there exists {t,},#, — +o0, such
that x(t,) = 0};

SWO = {2 = 2(t) : regular solution of Iq.(1): x(t) # 0 for ¢ sufficiently large,
and for all ¢, > to there exists to, > ta, tay > to such that a'(tq, )z’ (ta,) < 0}.

It is easy to prove that ST,57, 89, SWO are mutually disjoint. By the above
definitions, it turns out that solutions in the class ST are eventually either
positive increasing or negative decreasing, solutions in the class S~ are eventually
either positive nonincreasing or negative nondecreasing, solutions in the class S©
are oscillatory, and finally, solutions in the class SO are weakly oscillatory.

2. Main Results

Lemma 1. Assume that p(t) < 0,t > to;¢(z) > ¢ > 0, f'(x)/¢(z) > a > 0,
x # 0. Suppose that there exists a differentiable function p : [tg, +00) — (0, +00)
such that p'(t) > 0, and for sufficiently large T,

tin uf | e [q@) _ als) (”@ - p(s))ﬂ ds >0 2)

t—+o0 [ 4o \ p(s)  ca(s
holds. Then SWO = @ for Iq.(1).

Proof. Suppose that Iq.(1) has a solution x € S"©, without loss of generality,
we may assume that there exists ¢; > tg, such that z(t) > 0 for t > ¢; ( for
x(t) < 0, the proof is similar ). Then for all t, > ¢, there exists to, > ta,
tas > ta, such that z'(ta, )2 (ta,) < 0. Hence there exists a sequence {C,,} —
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+00, such that 2/(C,,) < 0. Choosing sufficiently large N, such that Cn satisfies
condition (2), i.e.

t / 2
lim inf p(s) lq(s) _als) (p (s) _ p((s) ) ] ds > 0.

t=+oo Jou da \ p(s)  ca(s)

Consider the function

W (t) = p(t)
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For arbitrarily b > t;, integrating the above inequality from b to t(t > b), we
have
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For the above Cy, if t > Cn, we have

alt)b(a(t) (1)
PO ) S

Hence
a(t)yp(a(t)a'(t) _ a(Cn)¥(z(Cn))2'(C)
lim su
Hmpp( ey MY )
. (5)  p(s)\*
+ lim sup q(s) — — ds p < 0.
tr+00 p(s)  ca(s)
Then we obtain /(¢ ) 0(t > Cy), which contradicts with 2/(ts, )2’ (ta,) < 0.
The proof is complete. O

Lemma 2. Assume that p(t) < 0,¢ > to;¢(x) > ¢ >0, f'(2)/¢(x) > a > 0,2 #
0. Suppose that there exists a differentiable function p : [tg, +00) — (0,400)
such that p(t) > 0, and

oo a(s /(s s)\?
f, o [‘“S) “w (e ] s < o “

1 e a(7) (P’(T) p(7) )2
1 — T T) — — drds = .
1o /to a(s)p(s)/s 4 )lq( ) da \ p(r)  ca(r) ’ +oo(5)
If f(u)/v(u) is strongly superlinear, that is for arbitrarily € > 0,

()

e J(u)

holds. Then ST = @ for Iq.(1).
)

TR
du < +o0, [m f(u)d > (6)

Proof. Suppose that Iq.(1) has a solution z € S, without loss of generality,
assume that there exists t; > o such that x(t) > 0,2'(t) > 0 for ¢t > ¢; ( for
x(t) < 0,2’ (t) < 0, the proof is similar ). As in the proof of Lemmal, we obtain
(3). Noting that z’(t) > 0 for ¢ > b, from (4), we have

a z(b))z’ +oo als (s )\
0< ,O(b)M _/b pls) Jals) - 4(04) (Z((S)) - CZ;((S))) ] -

f(x (b))

for arbitrarily b. For all ¢ > b, we have

. as) (F() )\ a(la()(1)
| o [q(s> -2 (48 - 22 ] s < p( )

p(s)  ca(s
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and we can obtain

[ [ o0 [qw -G (2 p((?)ﬂ dras

t /
- / Yla(s)r'(s)
v fa(s))
Letting t — +o00, from (5) and (6), we obtain a contradiction. The proof is com-
plete. O

Theorem 1. Assume that p(t) < 0,¢ > to;¢(x) > ¢ > 0, f'(2)/¢(z) > «
0,2 # 0. Suppose that there exists a differentiable function p : [tg, +00)
(0,400), such that p'(t) > 0. If (2), (4)-(6) hold, and

>
—

t

1
lim ——ds = 00 )
t=+oo Jy a(s)

also holds, then Iq.(1) is oscillatory.

Proof. From Lemma 1 and Lemma 2, ST = SW© = @ for 1q.(1). Therefore,
it suffices to show that S~ = @ for Iq.(1). Suppose that Iq.(1) has a solution
x € S7. Without loss of generality, we may assume that there exists t; > to,
such that x(t) > 0,2'(t) < 0 for ¢t > ¢; (for z(¢t) < 0,2'(t) > 0, the proof is
similar). By the assumption of Iq.(1), there exists ¢t > ¢, such that z'(t) # 0,
then there exists to > t1, such that 2/(t2) < 0. From Iq.(1), for ¢ > ¢,

(a(t)y(x(t)2 (1)) < —p(t)'(t) — q(t) f(x(t)) < 0.
Hence
a(t)y(x(t))z'(t) < a(ta)d(@(t2))2’(t2) =k (k <0).

Therefore, for t > to, we have

CE(t) t 1
(u)du < k/ ——ds,
z(ts) ty a(s)

noting condition (7), for t — 4oco(noting 0 < z(t) < z(t2)), the left of the above
inequality is lower bounded while the right is eventually minus infinity, which
gives a contradiction. The proof is complete. O

Theorem 2. Assume that p(t) < 0,¢ > to;¢(z) > ¢ > 0, f'(x)/Y(x) > «
0,z # 0. Suppose that there exists a differentiable function p : [tg, +00)
(0,400), such that p'(¢t) > 0 and

[ [qcs) - (28 M)ﬂ e Y

p(s)  cals

>
—

then all the nonoscillatory solution of Iq.(1) can be divided into the following
two types:

Ac: z(t) — C(constant)# 0(t — +00);

Ap: z(t) = 0(t — +00).
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Proof. Let « be a nonoscillatory solution of Iq.(1). Without loss of generality,
we may assume that z(¢) > 0 for ¢t > ¢; > to. Considering the function
a(t)y(z(t))='(t)
W(t) = p(t) ———F—25—=, t>t.
flx(t))

al)p(t) [p'(t)  p(t) ]°
W |5 ) ®)

Integrating the above inequality from #; to ¢

p(ww gLf/t p(s) [Q(S)G(S) (pl(S)p(S))> ] s

t t (t
where I — p(tl)a( D)Y((ty))' (1)
fla(t))

a,v and f, then there exists To > t1, such that 2/(¢) < 0 for ¢ > Ty, i.e., 2'(t)
is eventually minus. Hence x is monotone decreasing. Noting x(t) > 0, then x
is monotone decreasing and lower bounded for ¢ > Ty. Therefore, lim;_, 1 o, 2:(t)
exists, and it is also limited. It’s easily to obtain lim;_, 1, z(t) = C > 0.

For x(t) < 0(t > t1), similarly, we obtain lim;_, 4~ 2(t) = C < 0. The proof is
complete. (I

. Noting condition (8) and the symbols of
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Theorem 3. Assume that p(t) < 0,¢t > to;¢(z) > ¢ > 0, f'(x)/Y(x) > a >
0,2 # 0. Suppose that there exists a differentiable function p : [tg, +00) —
(0,4+00), such that p/(¢) > 0. If condition (8) holds, then Iq.(1) has a nonoscil-
latory solution z of type A. (i.e., lim;—, 1o 2(t) = C # 0) if and only if

+o00 # s B a(T) p'(T) . p(’T) 2 T s 00
/T a(s)p(s) </T P(7) [q(T) %o (P(T) CG(T)) 1 ¢ ) o (’10)

for sufficiently large T > .

Proof. Let x be a nonoscillatory solution of type A. of Iq.(1). Without loss of
generality, we assume that C' > 0, hence, x is eventually plus. As in the proof of
Theorem 1, z’(t) is eventually minus. Noting (8), then there exists T' > ¢¢, such
that 2/(t) < 0 and

¢ a(s '(s )\
e [qcs) - (2 20 ] ds >0,
for t > T. Integrating (9) from T to ¢(t > T), we have

o) ()2’ (1) t als) (0(5)  pls)\?
p(t)ngM—/Tp@)[q(s)— ( - )]d

FGalt da \pls)  ca(s)

/(s )\’
< [ oo [q<s> - ()2 ] ds.
where M = p(T)a(T)y(x(T))2'(T)/ f(x(T)). Hence
L) b [ ot [ats) - %2 (202) - 20 )] s,

p(s)

fz(t)) a(t)p(t) dor
Integrating the above inequality from 7" to ¢, then

“0 y(w) b : a(r) (p'(r)  p(r)\*
Lo, 7674 == | f, 7 [q“)‘ w (5 am) ] s
Letting t — +o00, then
/C Mdu
o) fu)

Y S S A PRI G B L CO R
L o ) )lQ( - (50 ) ] drds
Noting that z(T") > C > 0,¢(u)/f(u) > 0, we have

N

z(T)
P(u)
< /c F) du < 400,

T
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then (10) holds. For C' < 0, the proof is similar. The proof is complete. O

Theorem 4. Assume that p(t) < 0,t > to;¢(x) > ¢ > 0, f'(x)/¢(x) > a >
0,z # 0. Suppose that there exists a differentiable function p : [tg, +00) —
(0,400), such that p'(t) > 0. If the condition (8) holds, and for arbitrarily
e >0,

IO SUNY  (C FH
/Of(u)d < 400, /O f(u)d < +o0. (11)

Then Iq.(1) has a nonoscillatory solution x of type Ag (i.e., lim;—, y oo z(t) = 0)
if and only if (10) holds for sufficiently large T' > ¢g.

Proof. Let z be a nonoscillatory solution of type Ay of Iq.(1). Without loss of
generality, we may assume that x is eventually plus. As in the proof of Theorem
3, we have

z(t) t s , 2

¥(u) B 1 _a(n) (p (r)  p(7) )

Ly 7674 == | f, 0 [q(” ta o) wln) | T
Letting ¢t — 400, from z(¢) — 0, 2(T) > 0 and condition (11), then
e o) (0 _ 200 )
—_— — — drd
L e Lo lq“) 1o \p(n) " ca(r)) | 7Y
“ y(w)

Thus (10) holds. For z is eventually minus, the proof is similar. The proof is com-
plete. [l

From the above three theorems, we obtain the following corollary.

Corollary. Assume that p(t) < 0,t > to;¢(z) > ¢ >0, f'(x)/¢(z) > a >0,z #
0. Suppose that there exists a differentiable function p : [tg, +00) — (0, +00),
such that p'(¢) > 0. If condition (8) and (11) hold, and

[ (oo -2 (35 28)] ) =,

then Iq.(1) is oscillatory.

Remark. The corollary develops and generalizes the results of [1], especially

for P(t,a(t), /(1) = —p()a'(t), Q(tx(t)) = q(t)/(x(t)), and p(1) = 1, the
corollary will be the Theorem 1 in [1].
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