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THE CONSTRUCTION OF A NON-UNIMODAL GORENSTEIN
SEQUENCE'
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ABSTRACT. In this paper, we construct a Gorenstein Artinian algebra R/.J
with non-unimodal Hilbert function h = (1,13,12,13,1) to investigate the
algebraic structure of the ideal J in a polynomial ring R. For this pur-
pose, we use a software system Macaulay 2, which is devoted to supporting
research in algebraic geometry and commutative algebra.
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1. Introduction

Gorenstein algebras have been the subject of much research since they arise
in many situations in commutative algebra and algebraic geometry. One of the
most important problems in this area is whether a numerical sequence is the
Hilbert function of a Gorenstein algebra.

R. Stanley [8] introduced level algebras as a generalization of Gorenstein alge-
bras and investigated their nice properties via the trivial extension. The trivial
extension or idealization of a commutative ring by a module is a classical method
of constructing a new ring. This method has been exploited to construct Goren-
stein algebras with non-unimodal Hilbert functions (cf. [1], [2], [3], [8]). As a
typical example, one can see that there is an Artinian Gorenstein algebra over
a field with h-vector (1,13,12,13,1).

The goal of this paper is to compute minimal generators of homogeneous ideal
J in a polynomial ring R = K[z, 9, ... ,x13] such that R/J is an Gorenstein
algebra with h-vector (1,13,12,13,1), and to understand the ideal structure of
J. For this purpose, we will use a software system Macaulay 2, which is devoted
to supporting research in algebraic geometry and commutative algebra. The
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minimal generators and minimal free resolution of J will be presented, and we
investigate the structure of (J,L)/(L) for general linear form L. Finally, we
prove that the Hilbert function h = (1,13,12,13,1) of R/J has a decomposition
h ={¢+b, where ¢ = (1,12,3,4,0) and b = (0,1,9,9, 1) are the Hilbert functions
of R/(J,L) and R/(J : L)(—1) respectively.

Our results are expected to be useful for understanding the structure of non-
unimodal Gorenstein algebras.

2. Preliminaries

In this section we will introduce the basic notation and discuss some useful
results concerning Gorenstein and level algebras.

2.1. Gorenstein and level Algebra. Let R = K[x1,--- ,x,] be a polyno-
mial ring in n variables over a field K of characteristic zero, and m = (z1, ... ,z,)
be the maximal ideal of R.

If we write A = R/I for an Artinian K-algebra then the socle of A = R/I is
defined by

Soc(A) =ann(A) = (I :m)/I C A.
We say that A = @;_, Ay is a level algebra if Soc(A)) = (A4,). In this case, o is
called the socle degree of A and the vector space dimension of A, is called the
type of A.

Definition 1. A standard algebra A = R/I is a Gorenstein algebra if A is a
level algebra of type 1.

2.2. Macaulay’s Inverse System. There is a way to construct Gorenstein
algebras, using Macaulay’s Inverse Systems. Let R = Klx1,... ,2,] and S =
K[y1,...,yn] be the polynomial rings. For an element o = (ag, ... ,a,) € ZZ,,
we let x* denote the monomial z{* - - - z&". -

If x* = 27" - 2% € R is a monomial of degree d then we define

89 _ ag(ylv ;yn)
dy* Oy --- Oyn”

Xaog(ylv"' ,yn) =

If f =75 cnx aiX® is a homogeneous polynomial in R then this action can be
extended to f € R as follows:

fog= Z a;(x" o g).
aeNn

Definition 2. Let R = K|z1,--- ,zy,] and S = Ky1,... ,yn] be the polynomial
rings. If I C R is a homogenous ideal, then we define the set

I*={geS|fog=0, Vfel}

The following result shows the relationship between Artinian Gorenstein al-
gebras and Macaulay’s inverse system.
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Theorem 3. Let A = R/I be an Artinian graded K -algebra. Then the followings
are equivalent:
(a) A is a Gorenstein algebra.

(b) It is generated by a homogeneous polynomial f of degree o, where o is
the socle degree of A.

Proof. See Theorem 1.1.13 in [4]. O

2.3. Trivial Extensions. The trivial extension of A by a module is a classical
method of constructing new ring. R. Stanley has used this method to construct
an example of a Gorenstein Artin algebra with a non-unimodal Hilbert function
(see [8]).

For an Artinian K-algebra R/I, let wa be the canonical module of A. Let us
consider the following set:

Axwy={(a,m)|a€Ame M}.
Then we can define a multiplication on A X w4 by
(a,m) * (a',m") = (aa’,am’ + a'm)

such that A X w4 becomes a commutative ring with an identity element (1,0).
We say that this ring is a trivial extension of A and denote TE(A).

Theorem 4. Let A = R/I be a level algebra of type ¢ with the socle degree
o. Consider the shifted canonical module wa(—o — 1) of A. Then TE(A) is a
Gorenstein Artinian K-algebra of socle degree ¢ + 1. Moreover, suppose that
there are polynomials Fy,... ,F. € S = Klyi,... ,yn| of degree o such that

I={GEeR|GoF;=0, Yi=1,...,c

Then, we have TE(A) = R/J and J ={g € R|go f =0}, where
e R= Klzy,...,xp,a1,...,0¢] s a polynomial ring.
o f=aaF +akr+ - t+ak. €85 = Ky, . yYn,a1,...,a¢] is a
polynomial of degree o + 1 in R.
In this case, the Hilbert function H(T E(A),1) is given by H(A,i)+H(A, o+1—1i).

Proof. See [4] and [8]. O

3. Some construction of a non-unimodal Gorenstein Sequence

In this section, we compute a homogenous ideal .J in a polynomial ring R
such that TE(A) = R/J is a Gorenstein algebra with h-vector (1,13,12,13,1).
For this purpose, we use a software system Macaulay 2, which is devoted to
supporting research in algebraic geometry and commutative algebra.

R. Stanley considered an Artinian level algebra A = K[z, z2,x3]/(x1, x2, x3)
of type 10 with socle degree 3 and he has shown that there exists a non-unimodal
Gorenstein sequence with the h-vector (1,13,12,13,1) (see [8]). Note that the
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h-vector of A is given by (1, 3,6, 10). From Theorem 4, we see that A x wa(—4)
is a Gorenstein algebra with h-vector (1,13,12,13,1) and

(x1,22,23)" = { f € K[z1,29,23] | fog=0, Vg€ Ky, vz ysls}.

Now we see that (r1, 22, 23)* is the annihilator (under Macaulay’s inverse sys-
tem) of monomial basis of K[y1,y2,ys]s in degree 3. By Theorem 4, we see that
the ideal J = {G € R|G o F =0}, where R = K|x1,x2,23,a1,... ,a10] and
F =ayy} + asylys + asyiys + asyiys + asyiyays +
asy1y3 + arys + asyiys + agyeys + aioys.

Now, we have to compute the ideal J = {G € R|G o F = 0}. To do this, we
need the following result.

Theorem 5. Let F € K[xq,...,x,] be a homogeneous polynomial of degree d.
Let H =], 2¢ and K = (x{*1, 237", ... 2d*1). Then, we have

0H
<K : 8F) ={G € K[zy,... ,z,]|Go F =0}.

Proof. Note that it suffices to show that

Gon(GZ;I)oH, (1)

H
since it follows directly from (1) that Go F' = 0 if and only if a polynomial G a—

d+1 _.d+1 OF
+ +
1 T2

is contained in K = (z ,oo 3T For giving a proof (1), we use the

following notations:

o x* =z -z for an element o = (ag, ... ,a,) € Z%,.

° 6= (d,...,d) €L, sox?=H.

oH a; : _ d—ay
° 9F = Z k;x“*, which means F' =), k;x .
Let G=3_, ;x5 . Then we have that

GoF =Go (> kix’~)

= kalyx?m e
.

0H
= (GW> o I{7

which completes the proof. O

Using Macaulay 2, we define the polynomial ring R and F as follows:
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i1 : R = QQlyl, y2, y3, al,a2,a3,a4,ab,a6,a7,a8,a9,al0]
ol = R
ol : PolynomialRing
i2 @ F = alxyl73+al2*xyl~2xy2+al3%yl~2%y3+ad*yl*xy2~2+abxylxy2*y3+ab*. ..
3 2 2 2 2
02 =yl al + yl y2*a2 + yl y3*a3 + yl*y2 a4 + ylxy2xy3*ab + yl*y3 a6
3 2 2 3
+ y2 a7 + y2 y3*a8 + y2xy3 a9 + y3 all
o2 : R
i3 :  H = product apply(generators R, v -> v~4)
4 4 4 4 4 4 4 4 4 4 4 4 4
03 = 1yl y2y3 al a2 a3 a4 ab a6 a7 a8 a9 all
o3 : R

Now, the expression contract(m, n) can be used to compute partial deriva-
tives of a polynomial n by m (i.e., mon).
i4 : f1 := contract(F, H)

4 4 4 4 4 4 4 4 4 4 4 3
o4 =yl y2 y3*al a2 a3 a4 ab a6 a7 a8 a9 alld +

4 3 2 4 4 4 4 4 4 4 4 3 4
y1 y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 all +

4 2 3 4 4 4 4 4 4 4 3 4 4
y1l y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 alld +

4 3 4 4 4 4 4 4 3 4 4 4
y1 y2*xy3 al a2 a3 a4 ab a6 a7 a8 a9 alld +

3 4 2 4 4 4 4 4 3 4 4 4 4
y1l y2 y3 al a2 a3 a4 a5 a6 a7 a8 a9 all +

3 3 3 4 4 4 4 3 4 4 4 4 4
y1l y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 alld +

3 2 4 4 4 4 3 4 4 4 4 4 4
y1l y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 all +

2 4 3 4 4 3 4 4 4 4 4 4 4
y1 y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 all +

2 3 4 4 3 4 4 4 4 4 4 4 4
yl y2 y3 al a2 a3 a4 ab a6 a7 a8 a9 all +

4 4 3 4 4 4 4 4 4 4 4 4
yilxy2 y3 al a2 a3 a4 ab a6 a7 a8 a9 all

We define the ideal K = (y?,43,v5,a3,4a3,... ,a3,) and compute the desired
OH _
ideal (| K : — | ={G € R|GoF =0}.
idea oF {G € R|Go }
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i5 : K = matrix table(l, numgens R, (i, j) -> R_j"5)
o5 = | y175 y2°5 y3"5 al"5 a2”5 a3"5 a4"5 a5"5 a6”5 a7"5 a8"5 a9"5 al0”5 |
1 13
o5 : Matrix R <--- R
i6 : mingens (ideal K : f1)
o6 = al0”"2 a9%al0 a8all a7al0 a6alO0 abal0 a4al0 a3al0 a2al0 alal0 y2al0 ylalO

a972 aB8a9 a7a9 a6a9 aba9 a4a9 a3a9 a2a9 ala9 y2a9-y3all yla9 a872 a7a8

a6a8 aba8 a4a8 a3a8 a2a8 ala8 y2a8-y3a9 yla8 a7"2 a6a7 aba7 ad4a7 a3a7

a2a7 ala7 y3a7 y2a7-y3a8 yla7 a6"2 aba6 ada6 a3ab6 a2a6 ala6 y2a6

yla6-y3al0 a5°2 a4ab a3ab a2ab alab y2ab-y3a6 ylab-y3a9 a4"2 a3ad4 a2ad

alad y3a4d y2ad-y3ab ylad-y3a8 a3"2 a2a3 ala3 y2a3 yla3-y3a6 a2”2 ala2

y3a2 y2a2-y3a3 yla2-y3ab al"2 y3al y2al ylal-y3a3 y374 y2y3~3 yly3~3

y272y372 yly2y372 y172y372 y2~3y3 yly2~2y3 y1~2y2y3 y1~3y3 y274 yly2~3

y172y272 y173y2 y1~4

1 94
o6 Matrix R <--- R

Then we see that the h-vector of R/J is (1,13,12,13,1) as we wished.

i7 : J= ideal mingens (ideal K : f1);
o7 : Ideal of R
i8 : table(1, 5, (i, j) -> hilbertFunction(j, R/J))

08 = {{1, 13, 12, 13, 1}}

Finally, let us compute the betti table of R/.J.

i9 : betti res J
0 1 2 3 4 5 6
09 = total: 1 94 759 3145 8382 15620 21153
0: 1 . . . . . .
1: 79 585 2220 5403 9150 11178
2:
3: 15 174 925 2979 6470 9975
4:
7 8 9 10 11 12 13
total: | 21153 15620 8382 3145 759 94 1
0: . . . . .
1: 9975 6470 2979 925 174 15
2:
3: 11178 9150 5403 2220 585 79
4: 1
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09 : BettiTally

This betti table shows that A = R/.J is a Gorenstein Artinian Q-algebra, as
we wished.

Remark 6. Let R/J be an Artinian Gorenstein algebra with Hilbert function
h = (1,13,12,13,1) and let L be a general linear form in R. Without loss of
generality, we may assume that L = y3. Then, we have a decomposition of
Hilbert function h = (1,13,12,13,1);

h 1 13 12 13 1
Y4 : 1 12 (2 (3 0
b : 1 bz bg 1

where £ and b are Hilbert functions of R/(J, y3) and R/(J : ys3), respectively (see
[5]). Then, there are two possibilities for £ and b, namely,

¢ 1 12 3 40
b o 19 9 1,

or
¢ 1 12 4 5 0
b 1 8 8 1.

Which one does correspond to our case? Using Macaulay 2, we can compute
the restriction of the ideal J with the linear form ys.

i10 : S=QQ[y1,y2,al,a2,a3,a4,ab,a6,a7,a8,a9,al0];

i1l : ringhomomorphism = map(S, R,{yl,y2,0,al,a2,a3,a4,ab,a6,a7,a8,a9,al0});
oll : RingMap S <-——- R

i12 : J1= mingens ringhomomorphism J

012 = al0"2 a%9al0 a8all a7al0 abal0 abal0 a4al0 a3al0 a2alld alal0 y2al0 ylall

a972 aBa9 a7a9 ab6a9 aba9 a4a9 a3a9 a2a9 ala9 y2a9 yla9 a872 a7a8 a6a8

aba8 a4a8 a3a8 a2a8 ala8 y2a8 yla8 a772 a6a7 aba7 a4a7 a3a7 a2a7 ala7

y2a7 yla7 a6"2 aba6 a4a6 a3a6 a2a6 ala6 y2a6 yla6 ab"2 a4ab a3ab a2ab

alab y2ab ylab a4"2 a3a4 a2a4 alad y2a4 ylad a3"2 a2a3 ala3 y2a3 yla3

a272 ala2 y2a2 yla2 al"2 y2al ylal y274 yl1y2~3 y172y272 y1~3y2 yl174

1 80
ol2 : Matrix S <-——- R
i13 : table(l, 5, (i, j) -> hilbertFunction(j, S/J1))
o013 = {{1, 12, 3, 4, 0}}

From the computation by using Macaulay 2, we see that our case corresponds
to the former case. However, we do not know if there would be a Gorenstein
algebra satisfying the latter case. Hence there is a natural question here.
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Question 7. Can we construct a Gorenstein Artinian algebra R/J with the
following decomposition of h-vector

h 1 13 12 13 1
¢ 1 12 4 5 0
b : 0 1 8 8 1

where £ and b are Hilbert functions of R/(J, L) and R/(J : L)(—1), respectively.
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