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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

FOR FUZZY LINEAR PROGRAMMING

B. FARHADINIA

Abstract. This paper is concerned with deriving necessary and sufficient
optimality conditions for a fuzzy linear programming problem. Toward this
end, an equivalence between fuzzy and crisp linear programming problems
is established by means of a specific ranking function. Under this setting,
a main theorem gives optimality conditions which do not seem to be in
conflict with the so-called Karush-Kuhn-Tucker conditions for a crisp linear
programming problem.
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1. Introduction

Nowadays, the term ”fuzzy optimization” has been much extended in hun-
dreds practical fields such as artificial intelligence, manufacturing and manage-
ment and many papers have been published in this area. As one of the first efforts
in this direction, [2] was devoted to the study of fuzzy optimization problems in
which introduced the aggregation operators combining the fuzzy goals and the
fuzzy decision space. This study was followed up and extended by the others
[3],[4],[13],[20] and [21]. Moreover, there are many fuzzy-model-based techniques
have been developed as a useful tool for solving fuzzy optimization problems. For
instance, in [8] a fuzzy linear programming problem was defuzzified by symmet-
ric method of Bellman and Zadeh [2] and then the modified subgradient method
used for solving the foregoing problem. A geometric approach was proposed in
[12] for solving fuzzy linear programming problems. Furthermore, genetic al-
gorithm was implemented to deal with optimization problems in [10] and [14].
The other method involving ranking function has been developed in [5],[7] and
[9]. This method which is based on the concept of comparison of fuzzy numbers,
transforms a fuzzy linear programming problem to a classical one.
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Recently, studies have also concerned on the fuzzy optimality conditions. In [15]
the attempting is to develop the saddle point optimality conditions for a fuzzy
optimization problem via its fuzzy dual. The duality theorems and saddle point
optimality conditions in fuzzy nonlinear programming problems have been de-
rived in [17] based on some solution concepts for primal and dual problems. The
Karush-Kuhn-Tucker conditions in an optimization problem with interval-valued
objective function have been elicited in [16]. In [11] the Karush-Kuhn-Tucker
optimality conditions have been presented using the concepts of differentiability
and convexity of a fuzzy mapping.

The purpose of this paper is to derive the Karush-Kuhn-Tucker optimality
conditions for a fuzzy linear programming problem using a ranking function
similar to that proposed in [7]. This present contribution is outlined as follows:
Section 2 is devoted to give the definitions of fuzzy numbers and some related
results of fuzzy arithmetic on LR fuzzy numbers. In Section 3 using a ranking
function, the ordering of fuzzy numbers which is the key to fuzzy optimization
problems is discussed. Formulation and solution concept of fuzzy linear program-
ming problem are introduced in Section 4 and then it is proved the equivalence
relationship between a fuzzy linear programming problem and a crisp one via the
ranking function that maps the set of fuzzy numbers into the real line. Finally,
Section 5 presents the necessary and sufficient optimality conditions those are
well-known as the Karush-Kuhn-Tucker optimality conditions for a fuzzy linear
programming problem.

2. Preliminaries

It is quoted some preliminary notions, definitions and results in fuzzy sets
theory to be used throughout this article.

A fuzzy set Ã in X is characterized by a membership function µÃ : X → [0, 1],
and denoted by

Ã = {(x, µÃ(x)) | x ∈ X}.
An α-cut or α-level of the set Ã, is the crisp set [Ã]α = {x ∈ X | µÃ(x) ≥ α} and

the support of a fuzzy set Ã, is the crisp set Supp(Ã) = cl{x ∈ X | µÃ(x) > 0}.
Generally, a fuzzy set Ã is called a fuzzy number if the following conditions are
satisfied:

Ã is normal. It means that there exists an x ∈ X such that µÃ(x) = 1;
µÃ is quasi-concave. It means that for every x, y ∈ X

µÃ(γx+ (1− γ)y) ≥ min{µÃ(x), µÃ(y)}, γ ∈ [0, 1];

µÃ is upper semi-continuous. It means that [Ã]α are closed subsets of X for
all α ∈ [0, 1];

Supp(Ã) is compact. In other words, it is closed and bounded in X.
Let F (R) be the set of all fuzzy numbers on R.
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It is well known that the α-level set of a fuzzy number is a closed and bounded
interval [A(α), A(α)], where A(α) and A(α) denote respectively the left- and

right-hand endpoints of [Ã]α. A fuzzy number Ã ∈ F (R) is said to be positive
(strict positive) if A(α) ≥ 0 (A(α) > 0) for all 0 ≤ α ≤ 1, negative (strict
negative) if A(α) ≤ 0 (A(α) < 0) for all 0 ≤ α ≤ 1. One shall remark that if

Ã ∈ F (R) is positive (negative) then −Ã ∈ F (R) is negative (positive).
Let L,R : [0,∞) → [0, 1] be two upper semi-continuous, non-increasing func-

tions satisfying L(0) = R(0) = 1, L(1) = R(1) = 0, invertible on [0, 1]. Samples
of L(.) and R(.) can be found in [19]. Furthermore, let a and a be positive
numbers. The fuzzy number ã ∈ F (R) is an LR fuzzy number if

ã(x) ≡ µã(x) =





L(
a−x

a ), x ≤ a,

1, a ≤ x ≤ a,

R(x−a
a ), x ≥ a.

(1)

It is symbolically written ã = (a, a, a, a)LR, where a and a are called the mean

values satisfying a ≤ a and a, a are the left and right spreads, respectively.

An LR fuzzy number ã ∈ F (R) is said to be a trapezoidal fuzzy number if
the functions L and R are linear. Under the latter assumption, a real-numbered
quadruple (a, a, a, a)LR represents a trapezoidal fuzzy number.

One obtains the so-called triangular fuzzy number when the mean values of
a trapezoidal fuzzy number fulfilling a = a = a. In this case, triple (a, a, a)LR

characterizes the triangular fuzzy number ã ∈ F (R).
Remark that if ã ∈ F (R) is a triangular fuzzy number then

[ã]α = [a− L−1(α)a, a+R−1(α)a], 0 ≤ α ≤ 1. (2)

As particular case, one can get

[ã]α = [a(α), a(α)] = [a− (1− α)a, a+ (1− α)a], 0 ≤ α ≤ 1, (3)

when L(x) = R(x) = 1− x.
In the sequel, it will be denoted the set of all triangular fuzzy numbers by Fτ (R)
and if there is no confusion, ã ∈ Fτ (R) is represented by (a, a, a)LR instead of
(a, a, a)LR.

Let ã = (a, a, a)LR and b̃ = (b, b, b)LR be two triangular fuzzy numbers in

Fτ (R), a binary operation ¯ between ã and b̃ is defined as the triangular fuzzy
number characterizing by the membership function

(ã¯ b̃) (z) = sup
z=x◦y

min{ã(x), b̃(y)},

where using the extension principle stated in [18], the operation ¯ can be taken
as ⊕ or ⊗ corresponding to the conventional operations + or ×, respectively,
between two real numbers.
Fuzzy arithmetic operations on ã = (a, a, a)LR and b̃ = (b, b, b)LR in Fτ (R) are
given by:

Fuzzy addition: ã⊕ b̃ = (a, a, a)LR ⊕ (b, b, b)LR = (a+ b, a+ b, a+ b)LR ;
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Fuzzy subtraction: ãª b̃ = ã⊕ (−b̃) = (a, a, a)
LR

⊕ (−b, b, b)
LR

= (a − b, a+
b, a+ b)

LR
;

Fuzzy scalar product : k ⊗ ã = (k, 0, 0)LR ⊗ (a, a, a)LR

=

{
(ka, ka, ka)LR , k > 0,
(ka,−ka,−ka)

LR
, k < 0.

The details of proofs are omitted and the interested reader is referred to [6] and
[19].

Ã = [ãij ]m×n is a fuzzy matrix if and only if each element of Ã is a fuzzy
number, particularly, ãij = (aij , aij , aij)LR

. A fuzzy matrix with the LR fuzzy

number representation of entries, can be characterized by three crisp matrices
A = [aij ]m×n, A = [aij ]m×n and A = [aij ]m×n. In this sense, it is proper to

regard Ã = [ãij ]m×n as the fuzzy LR matrix and denote it by Ã = [A,A,A]
LR

.

Given two fuzzy matrices Ã and B̃. Any binary operation ¯ between two LR
fuzzy matrices, is defined as follows:

Ãm×n ⊕ B̃m×n = [A,A,A]
LR

⊕ [B,B,B]
LR

= [A+B,A+B,A+B]
LR

;

Ãm×n ⊗ B̃n×s = [A,A,A]
LR

⊗ [B,B,B]
LR

= [
∑n

k=1 ãik ⊗ b̃kj ]m×s.

3. Ranking fuzzy numbers

Up to now, a lot of progress has been made in the study of the ordering of
fuzzy numbers from different angles [5],[7] and [9] to map each fuzzy number into
a number of the real line and thus realize a comparison and ordering of fuzzy
numbers.
Ranking function is one of the most convenient approach to describe the order
relation of fuzzy numbers.
Definition 1. A mapping R : Fτ (R) → R is called a ranking function if for any

ã, b̃ ∈ Fτ (R) it satisfies:
ã º

R
b̃ if and only if R(ã) ≥ R(̃b);

ã ÂR b̃ if and only if R(ã) > R(̃b);

ã ≈R b̃ if and only if R(ã) = R(̃b).

Note that ã ¹
R
b̃ if and only if b̃ º

R
ã.

The following proposition can be easily verified by using the above definition.

Proposition 1. If R is a linear ranking function, that is

R(kã⊕ b̃) = kR(ã) +R(̃b), for all ã, b̃ ∈ Fτ (R), and k ∈ R, (4)

then, for any ã, b̃, c̃ and d̃ in Fτ (R) the following results hold:

ã º
R
b̃ if and only if ãª b̃ º

R
0̃ if and only if −b̃ º

R
− ã;

ã º
R
b̃ and c̃ º

R
d̃ deduces ã⊕ c̃ º

R
b̃⊕ d̃.
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Throughout this paper, the considered ranking function R is that introduced
in [7] given by

R(ã) =
1

2

∫

[0,1]

(a(α) + a(α)) dα, for any ã ∈ Fτ (R), (5)

where a(α) and a(α) are respectively the left- and right-hand endpoints of [ã]α.
In view of ã ∈ Fτ (R) with parameterizations given by (a, a, a)LR and (3), the

ranking function (5) is reduced to

R(ã) = a+
1

4
(a− a). (6)

Furthermore, in accordance with the foregoing ranking function and Definition

1, for any ã, b̃ ∈ Fτ (R)

ã º
R
b̃ if and only if a+

1

4
(a− a) ≥ b+

1

4
(b− b). (7)

Ordering fuzzy numbers by ranking function is the key to fuzzy linear pro-
gramming problems and provides a proper foundation for solving them via clas-
sical approaches.

4. Formulation of fuzzy linear programming problem

Generally, a fuzzy linear programming problem is to find minimum or max-
imum of uncertain objective function under some nondeterministic constraints.
Here, a class of such problems will be considered in which both objective func-
tion and constraints are with triangular fuzzy numbers. The general form of a
fuzzy linear programming problem, here can be stated as:

Problem FLP: Minimize

c̃⊗ x,

subject to

Ã⊗ x º
R
b̃,

x ≥ 0,

where x ∈ Rn, c̃ ∈ Fτ (Rn), Ã ∈ Fτ (Rm×n) and b̃ ∈ Fτ (Rm).

Definition 2. Any x ∈ Rn which satisfies the constraints and non-negativity
restrictions of Problem FLP is called a fuzzy feasible solution, and S = {x ∈
Rn | Ã ⊗ x º

R
b̃, x ≥ 0} denoted as the set of all fuzzy feasible solutions to

Problem FLP.

Definition 3. Any x∗ ∈ S is said to be a fuzzy optimum solution to Problem
FLP if c̃⊗ x º

R
c̃⊗ x∗ for all x ∈ S.

Remark that c̃⊗x ≈
R
c̃1 ⊗ x1 ⊕ ...⊕ c̃n ⊗ xn. If no confusion may arise,

∑
is

written for fuzzy summation
∑̃

. Hence, c̃⊗x will be indicated by
∑n

i=1 c̃i ⊗xi.
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Definition 4. Given x̂ ∈ Rn and some fuzzy constraints p̃ ⊗ x º
R
q̃, where

p̃, q̃ ∈ Fτ (Rn). Such constraints are referred to as binding or active constraints
at x̂ if p̃⊗ x̂ ≈R q̃.

Now, consider following conventional linear programming problem which is
defined in terms of ranking function R.

Problem RLP: Minimize

R(c̃)x,

subject to

R(Ã)x ≥ R(b̃),

x ≥ 0,

where x ∈ Rn, R(c̃) = (R(c̃1), ..., R(c̃n)) ∈ Rn, R(Ã) = [R(ãij)] ∈ Rm×n and

R(b̃) = (R(̃b1), ..., R(̃bm)) ∈ Rm.

Let SR = {x ∈ Rn | R(Ã)x ≥ R(b̃), x ≥ 0} be the set of all crisp feasible
solutions to Problem RLP.
The next theorem gives the relationship between Problem FLP and Problem
RLP.

Theorem 1. Problem FLP is equivalent to Problem RLP.

Proof. Firstly, it should be shown that S = SR, says, each fuzzy feasible so-
lution to Problem FLP corresponds to a feasible solution to Problem RLP and
vise versa. Then, the proof will be completed by verifying the correspondence
between a fuzzy optimum solution to Problem FLP and an optimum solution to
Problem RLP, provided they exist.

Suppose that x ∈ S. Then, fuzzy feasibility requires that

Ã⊗ x º
R
b̃, x ≥ 0.

Clearly, the foregoing inequalities hold if and only if
n∑

j=1

ãij ⊗ xj º
R
b̃i, i = 1, ...,m, xj ≥ 0, j = 1, ..., n,

or
n∑

j=1

(aij , aij , aij)LR ⊗ xj º
R
(bi, bi, bi)LR, i = 1, ...,m, xj ≥ 0, j = 1, ..., n,

n∑

j=1

(aijxj , aijxj , aijxj)LR º
R
(bi, bi, bi)LR, i = 1, ...,m, xj ≥ 0, j = 1, ..., n,

(

n∑

j=1

aijxj ,

n∑

j=1

aijxj ,

n∑

j=1

aijxj)LR º
R
(bi, bi, bi)LR, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n.
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By virtue of Definition 1, the latter inequalities fulfill if and only if

R(

n∑

j=1

ãijxj) ≥ R(̃bi), i = 1, ...,m, xj ≥ 0, j = 1, ..., n.

Linearity of R leads to

n∑

j=1

R(ãij)xj ≥ R(̃bi), i = 1, ...,m, xj ≥ 0, j = 1, ..., n,

that is

R(Ã)x ≥ R(b̃), x ≥ 0.

Consequently, x ∈ SR.
To complete the proof, assume that x∗ is an fuzzy optimum solution to Prob-

lem FLP. Then, fuzzy optimality requires that for all x ∈ S

c̃⊗ x º
R
c̃⊗ x∗,

or
n∑

j=1

c̃j ⊗ xj º
R

n∑

j=1

c̃j ⊗ x∗
j ,

n∑

j=1

(cj , cj , cj)LR ⊗ xj º
R

n∑

j=1

(cj , cj , cj)LR ⊗ x∗
j ,

(

n∑

j=1

cjxj ,

n∑

j=1

cjxj ,

n∑

j=1

cjxj)LR º
R
(

n∑

j=1

cjx
∗
j ,

n∑

j=1

cjx
∗
j ,

n∑

j=1

cjx
∗
j)LR.

The foregoing inequalities hold if and only if

R(

n∑

j=1

c̃jxj) ≥ R(

n∑

j=1

c̃jx
∗
j),

or
n∑

j=1

R(c̃j)xj ≥
n∑

j=1

R(c̃j)x
∗
j ,

that is

R(c̃)x ≥ R(c̃)x∗.

Follows from the fact that S = SR, the latter inequality holds for all x ∈ SR.
Hence, x∗ is an optimum solution to Problem RLP. ¤
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5. The Karush-Kuhn-Tucker conditions

Many authors made useful explorations in optimality conditions in fuzzy op-
timization problems from different angles. Saddle point optimality conditions in
fuzzy nonlinear programming problem have been discussed in [17]. The Karush-
Kuhn-Tucker conditions for constrained fuzzy minimization problem have been
derived in [11] based on the concepts of differentiability, convexity and mini-
mization of a fuzzy mapping. In [16] the Karush-Kuhn-Tucker conditions in an
optimization problem with interval-valued objective function have been stated.
In contrast to many attempts have been made for the Karush-Kuhn-Tucker op-
timality conditions in fuzzy optimization problems, these optimality conditions
in fuzzy linear programming problems based on comparison of fuzzy numbers
by means of ranking function had a high representation of minorities.

Proposition 2. (Farkas’ Lemma) One and only one of the following two crisp
systems has a solution.

System 1 : Ay ≤ 0, y ≤ 0, and cy > 0; (8)

System 2 : wA ≤ c, and w ≥ 0; (9)

where A ∈ Rm×n, y ∈ Rn, c ∈ Rn and w ∈ Rm.

Proof. See [1]. ¤
The aim here is to derive the necessary and sufficient optimality conditions

for Problem FLP. The following theorem gives a characterization of optimality
which does not seem to be in conflict with the crisp one.

Theorem 2. (K.K.T conditions) Let S = {x ∈ Rn | Ã ⊗ x º
R
b̃, x ≥ 0} be

non-empty. Then, x∗ ∈ S is an optimum solution to Problem FLP if and only
if (x∗,w, v) ∈ Rn × Rm × Rn is a solution to the following system:

Ã⊗ x º
R
b̃, x ≥ 0; (10)

w⊗ Ã ⊕ v ≈
R
c̃, w ≥ 0, v ≥ 0; (11)

w⊗ (Ã⊗ x ª b̃) ≈
R
0̃, , vx = 0. (12)

Proof. Let’s turn to Problem FLP where c̃⊗x is minimized on S. Suppose that
x∗ ∈ S. Hence,

Ã⊗ x∗ º
R
b̃, x∗ ≥ 0. (13)

In view of the ranking function R, the above inequalities hold if and only if

R(Ã⊗ x∗) ≥ R(b̃), x∗ ≥ 0,

or

R(Ã)x∗ ≥ R(b̃), x∗ ≥ 0. (14)

Let the set of latter inequalities which are binding at x∗, be denoting by

R(G̃)x ≥ R(g̃), (15)
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equivalently,

R(G̃⊗ x) ≥ R(g̃),

or

G̃⊗ x º
R
g̃. (16)

If x∗ is an optimum solution to Problem FLP then, there cannot exists any
improving feasible direction d at x∗. That is, a direction d cannot be found
fulfilling

G̃⊗ d º
R
0̃, and c̃⊗ d ≺R 0̃,

equivalently,

R(G̃⊗ d) ≥ 0, and R(c̃⊗ d) < 0,

or

R(G̃)d ≥ 0, and R(c̃)d < 0. (17)

If this is not the case, moving along the ray x∗ + λd decreases the objective
function value because of c̃ ⊗ d ≺

R
0̃ while the feasibility of x∗ + λd for any

λ > 0 is deduced by

G̃⊗ (x∗ + λd) ≈RG̃⊗ x∗ ⊕ λG̃⊗ d ≈R g̃⊕ λG̃⊗ d º
R
g̃.

The preceding discussion contradicts optimality of x∗ and hence, system (17)
cannot have a solution. Furthermore, as follows from Proposition 2, it can be
deduced there exists a u ∈ Rn such that

uR(G̃) = R(c̃), and u ≥ 0, (18)

equivalently,

u⊗ G̃ ≈
R
c̃, and u ≥ 0. (19)

The latter equality may be read in terms of (14) under the assumptions of binding

inequalities at x∗. To do this end, denote the i-th row of Ã, by Ãi for i = 1, ...,m
and a vector of zeros except for a 1 in the j-th position by ej . Indicate two sets
of indices as follows:

I = {i : R(Ãi)x
∗ = R(b̃i)} = {i : Ãi ⊗ x∗ ≈

R
b̃i}, (20)

and

J = {j : x∗
j = 0}. (21)

Taking u = (wi for i ∈ I, vj for j ∈ J) and respecting to (18), the next result
follows immediately

R(
∑

i∈I

wi ⊗ Ãi ⊕
∑

j∈J

vjej) = R(c̃), wi ≥ 0, i ∈ I, vj ≥ 0, j ∈ J,
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or ∑

i∈I

wiR(Ãi) +
∑

j∈J

vjej = R(c̃), wi ≥ 0, i ∈ I, vj ≥ 0, j ∈ J, (22)

equivalently,
∑

i∈I

wi ⊗ Ãi ⊕
∑

j∈J

vjej ≈
R
c̃, wi ≥ 0, i ∈ I, vj ≥ 0, j ∈ J. (23)

It is not hard to see that the obtained system of equations is another form
of (19). Equations (23) together with (13) are called the Karush-Kuhn-Tucker
optimality conditions for Problem FLP.
One direction of the assertion has been already proved so far. On the other
words, the Karush-Kuhn-Tucker conditions must necessarily hold at an optimum
solution x∗ to Problem FLP.

Next, it is shown that if x∗ is a feasible solution of Problem FLP fulfilling
the Karush-Kuhn-Tucker conditions then it will be optimum solution as well.
Toward this end, assume that equations (23) hold at x∗ with the two sets of
indices I and J given respectively by (20) and (21).

Now, for any x ∈ S one gets

R(c̃⊗ x ª c̃⊗ x∗) = R(c̃⊗ x)−R(c̃⊗ x∗) = R(c̃)x−R(c̃)x∗.

Substituting R(c̃) from the right-hand side of (22) into the foregoing relation,
results in

R(c̃⊗ x ª c̃⊗ x∗) = (
∑

i∈I

wiR(Ãi)x +
∑

j∈J

vjejx)

− (
∑

i∈I

wiR(Ãi)x
∗ +

∑

j∈J

vjejx
∗).

Since R(Ãi)x
∗ = R(bi), for i ∈ I and vjejx

∗ = 0, for j ∈ J , it is reduced to

R(c̃⊗ x ª c̃⊗ x∗) =
∑

i∈I

wi(R(Ãi)x−R(b̃i)) +
∑

j∈J

vjejx.

Furthermore, feasibility of x implies that

R(c̃⊗ x ª c̃⊗ x∗) ≥ 0,

equivalently,

c̃⊗ x ª c̃⊗ x∗ º
R
0̃,

or

c̃⊗ x º
R
c̃⊗ x∗. (24)

The above inequality holds true for any x ∈ S. Thus, x∗ is an optimum solution
to Problem FLP.
Consequently, the Karush-Kuhn-Tucker conditions are both necessary and suf-
ficient for the optimality of x∗.
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To deal conveniently with conditions (23), let’s put w = (w1, ..., wm) ≥ 0
and v = (v1, ..., vn) ≥ 0 where those wi’s and vj ’s are corresponding with the
non-binding constraints must be zeros. This allows conditions (23) to be written
as

w⊗ Ã ⊕ vI ≈
R
c̃, w ≥ 0, v ≥ 0,

or simply,

w⊗ Ã ⊕ v ≈
R
c̃, w ≥ 0, v ≥ 0.

In summary, the above arguments show that the Karush-Kuhn-Tucker condi-
tions can be presented by three conditions which are usually referred to as primal
feasibility, dual feasibility and complementary slackness and they are mathemat-
ically stated as requiring a solution (x∗,w,v) ∈ Rn ×Rm ×Rn to the following
system:

Ã⊗ x º
R
b̃, x ≥ 0; (Primal feasibility condition)

w⊗ Ã ⊕ v ≈R c̃, w ≥ 0, v ≥ 0; (Dual feasibility condition)

w⊗ (Ã⊗ x ª b̃) ≈R 0̃, vx = 0. (Complementary slackness condition) ¤

6. Numerical example

Consider Problem FLP as follows:

Minimize (−1, 1, 1)LR ⊗ x1 ⊕ (−3, 1, 1)LR ⊗ x2,

subject to (1, 1, 2)LR ⊗ x1 ⊕ (−2, 2, 1)LR ⊗ x2 º
R
(−4, 2, 1)LR,

(−1, 2, 1)LR ⊗ x1 ⊕ (−1, 1, 2)LR ⊗ x2 º
R
(−4, 1, 3)LR,

x1, x2 ≥ 0.

Let the point (x1, x2) = (0, 0) be supposed to be an optimum one. To verify this
assertion, it will be examined whether or not (x1, x2) = (0, 0) satisfies conditions
(10)-(12).

Obviously, primal feasibility condition (10) holds at (x1, x2) = (0, 0) so that

(1, 1, 2)LR ⊗ 0⊕ (−2, 2, 1)LR ⊗ 0 Â
R
(−4, 2, 1)LR,

(−1, 2, 1)LR ⊗ 0⊕ (−1, 1, 2)LR ⊗ 0 Â
R
(−4, 1, 3)LR,

where none of the above constraints is binding. This leads to (w1, w2) = (0, 0),
in order to satisfy complementary slackness condition (12). Dual feasibility
condition (11) with together w = 0 imply that

0̃⊕ (v1, v2) ≈R
((−1, 1, 1)LR, (−3, 1, 1)LR),

or

(v1, 0, 0)LR ≈R(−1, 1, 1)LR, (v2, 0, 0)LR ≈R(−3, 1, 1)LR.



348 B. Farhadinia

By Definition 1, the latter equalities turn out equivalent to

v1 = −1 +
1

4
(1− 1), v2 = −3 +

1

4
(1− 1).

The negative vector (v1, v2) = (−1,−3) violates the non-negativity restriction
of v given in (11). Hence, the point (x1, x2) = (0, 0) could not be an optimum
solution to the considered Problem FLP.

Once again the above argument is illustrated with the point (x1, x2) = ( 7512 ,
31
12 ).

Follows from the complementary slackness condition and x1, x2 > 0, one gets
immediately (v1, v2) = (0, 0). Then, considering dual feasibility condition, w =

(w1, w2) can be obtained by solving w⊗ Ã ≈
R
c̃, that is{

w1(1, 1, 2)LR ⊕ w2(−1, 2, 1)LR ≈
R
(−1, 1, 1)LR,

w1(−2, 2, 1)LR ⊕ w2(−1, 1, 2)LR ≈
R
(−3, 1, 1)LR,

or {
(w1 − w2, w1 + 2w2, 2w1 + w2)LR ≈

R
(−1, 1, 1)LR,

(−2w1 − w2, 2w1 + w2, w1 + 2w2)LR ≈R(−3, 1, 1)LR,

equivalently, {
5
4w1 − 5

4w2 = −1,
− 9

4w1 − 3
4w2 = −3,

hence, (w1, w2) = ( 1
20 ,

17
20 ) > 0. On the other hand, one can verify easily that

( 1, 1, 2)LR
75

12
⊕ (−2, 2, 1)LR

31

12
≈

R
(−4, 2, 1)LR,

(−1, 2, 1)LR
75

12
⊕ (−1, 1, 2)LR

31

12
≈R(−4, 1, 3)LR.

This means that Ã⊗ x ≈
R
b̃ or Ã⊗ xª b̃ ≈

R
0̃. Therefore, the complementary

slackness condition w⊗ (Ã⊗ xª b̃) ≈R 0̃ holds.
Consequently, the Karush-Kuhn-Tucker conditions (10)-(12) hold true for

(x1, x2) = ( 7512 ,
31
12 ). Thus, this point is really an optimum solution to the con-

sidered Problem FLP with optimal objective value

Z̃ ≈R(−1, 1, 1)LR
75

12
⊕ (−3, 1, 1)LR

31

12
≈R(−14,

53

6
,
53

6
)LR.

7. Conclusion

The argument of this paper explained that the necessary and sufficient opti-
mality conditions for Problem FLP can be given as a characterization of optimal-
ity which does not seem to be in conflict with the so-called Karush-Kuhn-Tucker
conditions for a crisp linear programming problem. Ranking function played the
main role in this scenario. The implication of this result is that it is theoretically
possible to investigate the fuzzy optimality conditions as same as the crisp ones.
Although here a specific ranking function was just considered to explore opti-
mality conditions, in fact, one still can derive the same results using any linear
ranking function as well.
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