SOME EXISTENCE RESULTS ON PERIODIC SOLUTIONS OF ORDINARY (q, p)-LAPLACIAN SYSTEMS ${ }^{\dagger}$

DANIEL PASCA AND CHUN-LEI TANG*

Abstract

Some existence theorems are obtained for periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian by the minimax methods in critical point theory.

AMS Mathematics Subject Classification : 34C25, 58E50. Key words and phrases : Periodic solution, (q, p)-Laplacian systems, (C) condition, Minimax methods.

1. Introduction

In the last years many authors starting with Mawhin and Willem (see [3]) proved the existence of solutions for problem

$$
\begin{aligned}
& \ddot{u}(t)=\nabla F(t, u(t)) \text { a.e. } t \in[0, T] \\
& u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{aligned}
$$

under suitable conditions on the potential F (see [12]-[24]). Also in a series of papers (see [4]-[6]) we have generalized some of these results for the case when the potential F is just locally Lipschitz in the second variable x not continuously differentiable. Very recent (see [7] and [9]) we have considered the second order Hamiltonian inclusions systems with p-Laplacian.

The aim of this paper is to show how the results obtained in [25] can be generalized. More exactly our results represent the extensions to second-order differential systems with (q, p)-Laplacian. As far as we know this kind of systems have been considered recently just in a few papers [2], [8] and [10].

[^0]Consider the second order system

$$
\left\{\begin{array}{l}
-\frac{d}{d f}\left(\left|\dot{u}_{1}(t)\right|^{q-2} \dot{u}_{1}(t)\right)=\nabla_{u_{1}} F\left(t, u_{1}(t), u_{2}(t)\right), \tag{1}\\
-\frac{d}{d t}\left(\left|\dot{u}_{2}(t)\right|^{p-2} \dot{u}_{2}(t)\right)=\nabla_{u_{2}} F\left(t, u_{1}(t), u_{2}(t)\right) \text { a.e. } t \in[0, T] \\
u_{1}(0)-u_{1}(T)=\dot{u}_{1}(0)-\dot{u}_{1}(T)=0 \\
u_{2}(0)-u_{2}(T)=\dot{u}_{2}(0)-\dot{u}_{2}(T)=0
\end{array}\right.
$$

where $1<p, q<\infty, T>0$, and $F:[0, T] \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ satisfy the following assumption (A):

- F is measurable in t for each $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$;
- F is continuously differentiable in $\left(x_{1}, x_{2}\right)$ for a.e. $t \in[0, T]$;
- there exist $a_{1}, a_{2} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$and $b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that
$\left|F\left(t, x_{1}, x_{2}\right)\right|,\left|\nabla_{x_{1}} F\left(t, x_{1}, x_{2}\right)\right|,\left|\nabla_{x_{2}} F\left(t, x_{1}, x_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right] b(t)$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ and a.e. $t \in[0, T]$.
Following Tang and Wu [23], we generalize subquadratic condition in Rabinowitz's sense, that is, there exist $0<\mu<r=\min (q, p), M>0$ such that

$$
\begin{equation*}
\left(\nabla_{\left(x_{1}, x_{2}\right)} F\left(t, x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right) \leq \mu F\left(t, x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

for all $\left|\left(x_{1}, x_{2}\right)\right| \geq M$ and a.e. $t \in[0, T]$. We prove that under condition (2) and some other suitable conditions, the corresponding energy functional also satisfies (C) condition. Then we get some existence results for problem (1) by the Saddle Point Theorem in critical point theory. The main results are the following theorems.

Theorem 1. Suppose that F satisfies assumptions (A) and (2). Assume that there exists $g \in L^{1}(0, T)$ such that

$$
\begin{equation*}
F\left(t, x_{1}, x_{2}\right) \geq g(t) \tag{3}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$, and that there exists a subset E of $[0, T]$ with meas $(E)>0$, such that

$$
\begin{equation*}
F\left(t, x_{1}, x_{2}\right) \rightarrow+\infty \text { as }|x|=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}} \rightarrow \infty \tag{4}
\end{equation*}
$$

for a.e. $t \in E$. Then problem (1) has at least one solution in $W=W_{T}^{1, q} \times W_{T}^{1, p}$.
Corollary 2. Suppose that F satisfies assumptions (A) and (2). Assume that

$$
F\left(t, x_{1}, x_{2}\right) \rightarrow+\infty \text { as }|x|=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}} \rightarrow \infty
$$

uniformly for a.e. $t \in[0, T]$. Then problem (1) has at least one solution in $W=W_{T}^{1, q} \times W_{T}^{1, p}$.
Theorem 3. Suppose that F satisfies assumptions (A), (2) and

$$
\begin{equation*}
\int_{0}^{T} F\left(t, x_{1}, x_{2}\right) \rightarrow+\infty \text { as }|x|=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}} \rightarrow \infty \tag{5}
\end{equation*}
$$

Assume that $F(t, \cdot, \cdot)$ is (β, γ)-subconvex for a.e. $t \in[0, T]$ with $\beta>0, \gamma>0$, that is,

$$
\begin{equation*}
F\left(t, \beta\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)\right) \leq \gamma\left(F\left(t, x_{1}, x_{2}\right)+F\left(t, y_{1}, y_{2}\right)\right) \tag{6}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$. Then problem (1) has at least one solution in $W=W_{T}^{1, q} \times W_{T}^{1, p}$.

Remark 1. Theorems 1 and 3 generalizes Theorem 1 and 2 of $X u$ and Tang [25]. In fact, it follows from our theorems by letting $F\left(t, x_{1}, x_{2}\right)=F_{1}\left(t, x_{1}\right)$.

2. The proofs of the theorems

We introduce some functional spaces. Let $T>0$ be a positive number and $1<q, p<\infty$. We use $|\cdot|$ to denote the Euclidean norm in $\mathbb{R}^{\mathbb{N}}$. We denote by $W_{T}^{1, p}$ the Sobolev space of functions $u \in L^{p}\left(0, T ; \mathbb{R}^{\mathbb{N}}\right)$ having a weak derivative $\dot{u} \in L^{p}\left(0, T ; \mathbb{R}^{\mathbb{N}}\right)$. The norm in $W_{T}^{1, p}$ is defined by

$$
\|u\|_{W_{T}^{1, p}}=\left(\int_{0}^{T}\left(|u(t)|^{p}+|\dot{u}(t)|^{p}\right) d t\right)^{\frac{1}{p}}
$$

It follows from [3] that $W_{T}^{1, p}$ is a reflexive and uniformly convex Banach space. From [1], we know that a locally uniformly convex Banach space X has the Kadec-Klee property, that is, for any sequence $\left\{u_{n}\right\}$ such that $u_{n} \rightharpoonup u$ weakly in X and $\left\|u_{n}\right\| \rightarrow\|u\|$, we have $u_{n} \rightarrow u$ strongly in X. We will use this property later.

Moreover, we use the space W defined by

$$
W=W_{T}^{1, q} \times W_{T}^{1, p}
$$

with the norm $\left\|\left(u_{1}, u_{2}\right)\right\|_{W}=\left\|u_{1}\right\|_{W_{T}^{1, q}}+\left\|u_{2}\right\|_{W_{T}^{1, p}}$. It is clear that W is a reflexive Banach space.
We recall that

$$
\|u\|_{p}=\left(\int_{0}^{T}|u(t)|^{p} d t\right)^{\frac{1}{p}} \text { and }\|u\|_{\infty}=\max _{t \in[0, T]}|u(t)| .
$$

For our aims it is necessary to recall some very well know results (for proof and details see [3]).

Proposition 4. Each $u \in W_{T}^{1, p}$ can be written as $u(t)=\bar{u}+\tilde{u}(t)$ with

$$
\bar{u}=\frac{1}{T} \int_{0}^{T} u(t) d t, \quad \int_{0}^{T} \tilde{u}(t) d t=0
$$

We have the Sobolev's inequality

$$
\|\tilde{u}\|_{\infty} \leq C\|\dot{u}\|_{p},\|\tilde{v}\|_{\infty} \leq C\|\dot{v}\|_{q} \quad \text { for each } u \in W_{T}^{1, p}, v \in W_{T}^{1, q}
$$

and Wirtinger's inequality

$$
\|\tilde{u}\|_{p} \leq C\|\dot{u}\|_{p},\|\tilde{v}\|_{q} \leq C\|\dot{v}\|_{q} \quad \text { for each } u \in W_{T}^{1, p}, v \in W_{T}^{1, q}
$$

In [16] the authors have proved the following result (see Lemma 3.1) which generalize a very well known result proved by Jean Mawhin and Michel Willem (see Theorem 1.4 in [3]):

Lemma 5. Let $L:[0, T] \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R},\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right) \rightarrow$ $L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)$ be measurable in t for each $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, and continuously differentiable in $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ for a.e. $t \in[0, T]$. If there exist $a_{i} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$, $b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$, and $c_{1} \in L^{p}\left(0, T ; \mathbb{R}_{+}\right), c_{2} \in L^{q}\left(0, T ; \mathbb{R}_{+}\right), 1<p, q<\infty$, such that for a.e. $t \in[0, T]$ and every $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$, one has

$$
\begin{aligned}
&\left|L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]\left[b(t)+\left|y_{1}\right|^{q}+\left|y_{2}\right|^{p}\right], \\
&\left|D_{x_{1}} L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]\left[b(t)+\left|y_{2}\right|^{p}\right], \\
&\left|D_{x_{2}} L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]\left[b(t)+\left|y_{1}\right|^{q}\right], \\
&\left|D_{y_{1}} L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]\left[c_{1}(t)+\left|y_{1}\right|^{q-1}\right], \\
&\left|D_{y_{2}} L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)\right| \leq\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]\left[c_{2}(t)+\left|y_{2}\right|^{p-1}\right],
\end{aligned}
$$

then the function $\varphi: W_{T}^{1, q} \times W_{T}^{1, p} \rightarrow \mathbb{R}$ defined by

$$
\varphi\left(u_{1}, u_{2}\right)=\int_{0}^{T} L\left(t, u_{1}(t), u_{2}(t), \dot{u}_{1}(t), \dot{u}_{2}(t)\right) d t
$$

is continuously differentiable on $W_{T}^{1, q} \times W_{T}^{1, p}$ and

$$
\begin{aligned}
\left\langle\varphi^{\prime}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle= & \int_{0}^{T}\left[\left(D_{x_{1}} L\left(t, u_{1}(t), u_{2}(t), \dot{u}_{1}(t), \dot{u}_{2}(t)\right), v_{1}(t)\right)\right. \\
& +\left(D_{y_{1}} L\left(t, u_{1}(t), u_{2}(t), \dot{u}_{1}(t), \dot{u}_{2}(t)\right), \dot{v}_{1}(t)\right) \\
& +\left(D_{x_{2}} L\left(t, u_{1}(t), u_{2}(t), \dot{u}_{1}(t), \dot{u}_{2}(t)\right), v_{2}(t)\right) \\
& \left.+\left(D_{y_{2}} L\left(t, u_{1}(t), u_{2}(t), \dot{u}_{1}(t), \dot{u}_{2}(t)\right), \dot{v}_{2}(t)\right)\right] d t .
\end{aligned}
$$

Corollary 6. Let $L:[0, T] \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ be defined by

$$
L\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)=\frac{1}{q}\left|y_{1}\right|^{q}+\frac{1}{p}\left|y_{2}\right|^{p}-F\left(t, x_{1}, x_{2}\right)
$$

where $F:[0, T] \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ satisfy condition (A). If $\left(u_{1}, u_{2}\right) \in W_{T}^{1, q} \times W_{T}^{1, p}$ is a solution of the corresponding Euler equation $\varphi^{\prime}\left(u_{1}, u_{2}\right)=0$, then $\left(u_{1}, u_{2}\right)$ is a solution of (1).

Remark 2. The function $\varphi: W \rightarrow \mathbb{R}$ given by

$$
\varphi\left(u_{1}, u_{2}\right)=\frac{1}{q} \int_{0}^{T}\left|\dot{u}_{1}\right|^{q} d t+\frac{1}{p} \int_{0}^{T}\left|\dot{u}_{2}\right|^{p} d t-\int_{0}^{T} F\left(t, u_{1}, u_{2}\right) d t
$$

for all $\left(u_{1}, u_{2}\right) \in W$, is weakly lower semi-continuous (w.l.s.c.) on W as the sum of two convex continuous functions and of a weakly continuous one. Moreover,
one has

$$
\begin{aligned}
\left\langle\varphi^{\prime}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle= & \int_{0}^{T}\left(\left|\dot{u}_{1}\right|^{q-2} \dot{u}_{1}, \dot{v}_{1}\right) d t+\int_{0}^{T}\left(\left|\dot{u}_{2}\right|^{p-2} \dot{u}_{2}, \dot{v}_{2}\right) d t \\
& -\int_{0}^{T}\left(\nabla_{\left(u_{1}, u_{2}\right)} F\left(t, u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) d t
\end{aligned}
$$

for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in W$.
Lemma 7. ([25]) In Sobolev space $W_{T}^{1, p}$, for $u \in W_{T}^{1, p},\|u\| \rightarrow \infty$ if and only if $\left(|\bar{u}|^{p}+\int_{0}^{T}|\dot{u}|^{p} d t\right)^{1 / p} \rightarrow \infty$.
Lemma 8. Under conditions (A), (2), (3) and (4), the functional φ satisfies condition (C), that is, $\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ has a convergent subsequence in W whenever $\varphi\left(u_{1 n}, u_{2 n}\right)$ is bounded and $\left\|\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right)\right\| \times\left(1+\left\|\left(u_{1 n}, u_{2 n}\right)\right\|\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Let $\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ be a sequence in W such that $\varphi\left(u_{1 n}, u_{2 n}\right)$ is bounded and $\left\|\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right)\right\| \times\left(1+\left\|\left(u_{1 n}, u_{2 n}\right)\right\|\right) \rightarrow 0$ as $n \rightarrow \infty$. Then there exists a constant C_{1} such that

$$
\begin{equation*}
\left|\varphi\left(u_{1 n}, u_{2 n}\right)\right| \leq C_{1},\left\|\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right)\right\|\left(1+\left\|\left(u_{1 n}, u_{2 n}\right)\right\|\right) \leq C_{1} \tag{7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Let

$$
h(t)=(r+M) b(t) \max _{\left|\left(x_{1}, x_{2}\right)\right| \leq M}\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right] .
$$

Then, by assumption (A) and (2), one has

$$
\begin{equation*}
-h(t)+\left(\nabla_{\left(x_{1}, x_{2}\right)} F\left(t, x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right) \leq \mu F\left(t, x_{1}, x_{2}\right) \tag{8}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ and a.e. $t \in[0, T]$. It follows that

$$
\begin{aligned}
& (r+1) C_{1} \geq\left\|\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right)\right\|\left(1+\left\|\left(u_{1 n}, u_{2 n}\right)\right\|\right)-r \varphi\left(u_{1 n}, u_{2 n}\right) \\
\geq & \left(\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right),\left(u_{1 n}, u_{2 n}\right)\right)-r \varphi\left(u_{1 n}, u_{2 n}\right) \\
\geq & \int_{0}^{T}\left[r F\left(t, u_{1 n}, u_{2 n}\right)-\left(\nabla_{\left(x_{1}, x_{2}\right)} F\left(t, u_{1 n}, u_{2 n}\right),\left(u_{1 n}, u_{2 n}\right)\right)\right] d t \\
\geq & (r-\mu) \int_{0}^{T} F\left(t, u_{1 n}, u_{2 n}\right) d t-\int_{0}^{T} h(t) d t
\end{aligned}
$$

for all $n \in \mathbb{N}$, which implies that

$$
\begin{equation*}
\int_{0}^{T} F\left(t, u_{1 n}, u_{2 n}\right) \leq C_{2} \tag{9}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and some constant C_{2}. By (7) and (9), one has

$$
C_{1} \geq \varphi\left(u_{1 n}, u_{2 n}\right) \geq \frac{1}{q} \int_{0}^{T}\left|\dot{u}_{1 n}\right|^{q} d t+\frac{1}{p} \int_{0}^{T}\left|\dot{u}_{2 n}\right|^{p} d t-C_{2}
$$

for all $n \in \mathbb{N}$. Hence we have

$$
\begin{equation*}
\int_{0}^{T}\left|\dot{u}_{1 n}\right|^{q} d t \leq C_{3} \text { and } \int_{0}^{T}\left|\dot{u}_{2 n}\right|^{p} d t \leq C_{3} \tag{10}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and some constant C_{3}. By Sobolev's inequality, we get

$$
\begin{equation*}
\left\|\tilde{u}_{1 n}\right\|_{\infty} \leq C_{4} \text { and }\left\|\tilde{u}_{2 n}\right\|_{\infty} \leq C_{4} \tag{11}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and some constant C_{4}.
We argue that the sequence $\left\{\left(\bar{u}_{1 n}, \bar{u}_{2 n}\right)\right\}$ is bounded. Otherwise, there is a subsequence, again denoted by $\left\{\left(\bar{u}_{1 n}, \bar{u}_{2 n}\right)\right\}$, such that $\left|\left(\bar{u}_{1 n}, \bar{u}_{2 n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$. Let

$$
\begin{aligned}
\left(v_{1 n}, v_{2 n}\right) & =\frac{\left(u_{1 n}, u_{2 n}\right)}{\left\|\left(u_{1 n}, u_{2 n}\right)\right\|_{W}} \\
& =\frac{\left(\bar{u}_{1 n}, \bar{u}_{2 n}\right)}{\left\|\left(u_{1 n}, u_{2 n}\right)\right\|_{W}}+\frac{\left(\tilde{u}_{1 n}, \tilde{u}_{2 n}\right)}{\left\|\left(u_{1 n}, u_{2 n}\right)\right\|_{W}} \\
& =\left(\bar{v}_{1 n}, \bar{v}_{2 n}\right)+\left(\tilde{v}_{1 n}, \tilde{v}_{2 n}\right)
\end{aligned}
$$

Then, $\left\{\left(v_{1 n}, v_{2 n}\right)\right\}$ is bounded in W and by the compactness of the embedding $W=W_{T}^{1, q} \times W_{T}^{1, p} \subset C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right) \times C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right)$, there is a subsequence, again denoted by $\left\{\left(v_{1 n}, v_{2 n}\right)\right\}$, such that

$$
\begin{aligned}
& \left(v_{1 n}, v_{2 n}\right) \rightharpoonup\left(v_{1}, v_{2}\right) \quad \text { weakly in } \quad W \\
& \left(v_{1 n}, v_{2 n}\right) \rightarrow\left(v_{1}, v_{2}\right) \quad \text { strongly in }
\end{aligned} \quad C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right) \times C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right) .
$$

By (11), $\left\{\left(\tilde{u}_{1 n}, \tilde{u}_{2 n}\right)\right\}$ is bounded in $C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right) \times C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right)$, so $\left(v_{1}, v_{2}\right) \in$ $\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ and $\left(v_{1}, v_{2}\right) \neq(0,0)$. Thus $\left|\left(u_{1 n}(t), u_{2 n}(t)\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, for all $t \in[0, T]$. From (4) and Lebesgue-Fatou Lemma, we have

$$
\liminf _{n \rightarrow \infty} \int_{0}^{T} F\left(t, u_{1 n}, u_{2 n}\right) d t \geq \liminf _{n \rightarrow \infty} \int_{E} F\left(t, u_{1 n}, u_{2 n}\right) d t-\int_{0}^{T}|g(t)| d t=+\infty
$$

which contradicts (9).
Then, by Lemma $7\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ is bounded in W. By the compactness of the embedding $W_{T}^{1, q}\left(\right.$ or $\left.W_{T}^{1, p}\right) \subset C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right)$, the sequence $\left\{u_{1 n}\right\}$ (or $\left\{u_{2 n}\right\}$) has a subsequence, still denoted by $\left\{u_{1 n}\right\}$ (or $\left\{u_{2 n}\right\}$), such that

$$
\begin{gather*}
u_{1 n}\left(\text { or } u_{2 n}\right) \rightharpoonup u_{1}\left(\text { or } u_{2}\right) \quad \text { weakly in } W_{T}^{1, q}\left(\text { or } W_{T}^{1, p}\right), \tag{12}\\
u_{1 n} \rightarrow u_{1} \quad \text { strongly in } C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right) \tag{13}
\end{gather*}
$$

Note that

$$
\begin{aligned}
\left\langle\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right),\left(u_{1}-u_{1 n}, 0\right)\right\rangle= & \int_{0}^{T}\left|\dot{u}_{1 n}\right|^{q-2}\left(\dot{u}_{1 n}, \dot{u}_{1}-\dot{u}_{1 n}\right) d t \\
& -\int_{0}^{T}\left(\nabla_{x_{1}} F\left(t, u_{1 n}, u_{2 n}\right), u_{1}-u_{1 n}\right) d t \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. From (13), $\left\{u_{1 n}\right\}$ is bounded in $C\left([0, T] ; \mathbb{R}^{\mathbb{N}}\right)$. Then we have

$$
\begin{aligned}
\left|\int_{0}^{T}\left(\nabla_{x_{1}} F\left(t, u_{1 n}, u_{2 n}\right), u_{1}-u_{1 n}\right) d t\right| & \leq \int_{0}^{T}\left|\nabla_{x_{1}} F\left(t, u_{1 n}, u_{2 n}\right)\right| \cdot\left|u_{1}-u_{1 n}\right| d t \\
& \leq C_{5} \int_{0}^{T} b(t)\left|u_{1}-u_{1 n}\right| d t \\
& \leq C_{5}\|b\|_{L^{1}}\left\|u_{1}-u_{1 n}\right\|_{\infty}
\end{aligned}
$$

for some positive constant C_{5}, which combined with (13) implies that

$$
\int_{0}^{T}\left(\nabla_{x_{1}} F\left(t, u_{1 n}, u_{2 n}\right), u_{1}-u_{1 n}\right) d t \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence one has

$$
\int_{0}^{T}\left|\dot{u}_{1 n}\right|^{q-2}\left(\dot{u}_{1 n}, \dot{u}_{1}-\dot{u}_{1 n}\right) d t \rightarrow 0 \text { as } n \rightarrow \infty
$$

Moreover from (13) we obtain

$$
\int_{0}^{T}\left|u_{1 n}\right|^{q-2}\left(u_{1 n}, u_{1}-u_{1 n}\right) d t \rightarrow 0 \text { as } n \rightarrow \infty
$$

Set

$$
\psi\left(u_{1}, u_{2}\right)=\frac{1}{q}\left(\int_{0}^{T}\left|u_{1}\right|^{q} d t+\int_{0}^{T}\left|\dot{u}_{1}\right|^{q} d t\right)+\frac{1}{p}\left(\int_{0}^{T}\left|u_{2}\right|^{p} d t+\int_{0}^{T}\left|\dot{u}_{2}\right|^{p} d t\right)
$$

Then one obtains

$$
\begin{aligned}
\left\langle\psi^{\prime}\left(u_{1 n}, u_{2 n}\right),\left(u_{1}-u_{1 n}, 0\right)\right\rangle= & \int_{0}^{T}\left|u_{1 n}\right|^{q-2}\left(u_{1 n}, u_{1}-u_{1 n}\right) d t \\
& +\int_{0}^{T}\left|\dot{u}_{1 n}\right|^{q-2}\left(\dot{u}_{1 n}, \dot{u}_{1}-\dot{u}_{1 n}\right) d t
\end{aligned}
$$

and

$$
\begin{equation*}
\left\langle\psi^{\prime}\left(u_{1 n}, u_{2 n}\right),\left(u_{1}-u_{1 n}, 0\right)\right\rangle \rightarrow 0 \text { as } n \rightarrow \infty \tag{14}
\end{equation*}
$$

By the Hölder's inequality, we have

$$
0 \leq\left(\left\|u_{1 n}\right\|^{q-1}-\left\|u_{1}\right\|^{q-1}\right)\left(\left\|u_{1 n}\right\|-\left\|u_{1}\right\|\right) \leq\left\langle\psi^{\prime}\left(u_{1 n}, u_{2 n}\right)-\psi^{\prime}\left(u_{1}, u_{2}\right), u_{1 n}-u_{1}\right\rangle
$$

which together with (14) yields $\left\|u_{1 n}\right\| \rightarrow\left\|u_{1}\right\|$. It follows that $u_{1 n} \rightarrow u_{1}$ strongly in $W_{T}^{1, q}$ by the uniform convexity of $W_{T}^{1, q}$. Similarly we have $u_{2 n} \rightarrow u_{2}$ strongly in $W_{T}^{1, p}$. Hence the (C) condition is satisfied.
Proof of Theorem 1. Let $\widetilde{W}=\widetilde{W}_{T}^{1, q} \times \widetilde{W}_{T}^{1, p}$ be the subspace of W given by $\widetilde{W}=\left\{\left(u_{1}, u_{2}\right) \in W \mid \quad\left(\bar{u}_{1}, \bar{u}_{2}\right)=(0,0)\right\}$. Then $W=\widetilde{W}+\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$. For using the Saddle Point Theorem(see [11] or [3]) we have only to prove that
$\left(\varphi_{1}\right) \varphi\left(u_{1}, u_{2}\right) \rightarrow+\infty$ as $\left\|\left(u_{1}, u_{2}\right)\right\| \rightarrow \infty$ in \widetilde{W},
$\left(\varphi_{2}\right) \varphi\left(u_{1}, u_{2}\right) \rightarrow-\infty$ as $\left\|\left(u_{1}, u_{2}\right)\right\| \rightarrow \infty$ in $\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$.

For every $\left|\left(x_{1}, x_{2}\right)\right| \geq M$ and a.e. $t \in[0, T]$, let

$$
\begin{equation*}
y(s)=F\left(t, s x_{1}, s x_{2}\right), \quad Q(s)=y^{\prime}(s)-\frac{\mu}{s} y(s) \tag{15}
\end{equation*}
$$

Then by (2) we have

$$
\begin{equation*}
Q(s)=\frac{1}{s}\left[\left(\nabla_{\left(x_{1}, x_{2}\right)} F\left(t, s x_{1}, s x_{2}\right),\left(s x_{1}, s x_{2}\right)\right)-\mu F\left(t, s x_{1}, s x_{2}\right)\right] \leq 0 \tag{16}
\end{equation*}
$$

for all $s \geq M /\left|\left(x_{1}, x_{2}\right)\right|$. It follows from (15) that $y(s)=F\left(t, s x_{1}, s x_{2}\right)$ is a solution of the first order linear ordinary differential equation

$$
y^{\prime}(s)=\frac{\mu}{s} y(s)+Q(s)
$$

which implies that

$$
F\left(t, s x_{1}, s x_{2}\right)=s^{\mu}\left(\int_{1}^{s} r^{-\mu} Q(r) d r+F\left(t, x_{1}, x_{2}\right)\right)
$$

for $s \geq M /\left|\left(x_{1}, x_{2}\right)\right|$. Moreover, by assumption (A) and (16), we have

$$
a_{0} b(t) \geq F\left(t, \frac{M x_{1}}{\left|\left(x_{1}, x_{2}\right)\right|}, \frac{M x_{2}}{\left|\left(x_{1}, x_{2}\right)\right|}\right) \geq\left(\frac{M}{\left|\left(x_{1}, x_{2}\right)\right|}\right)^{\mu} F\left(t, x_{1}, x_{2}\right)
$$

for all $\left|\left(x_{1}, x_{2}\right)\right| \geq M$, a.e. $t \in[0, T]$ and some constant
$a_{0}=\max _{\left|\left(x_{1}, x_{2}\right)\right| \leq M}\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right]$, which implies that

$$
F\left(t, x_{1}, x_{2}\right) \leq a_{0} b(t)\left(\left(\frac{\left|\left(x_{1}, x_{2}\right)\right|}{M}\right)^{\mu}+1\right)
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ and a.e. $t \in[0, T]$. By Sobolev's inequality and Wirtinger's inequality, we have

$$
\begin{aligned}
\varphi\left(u_{1}, u_{2}\right) \geq & \frac{1}{q}\left\|\dot{u}_{1}\right\|_{q}^{q}+\frac{1}{p}\left\|\dot{u}_{2}\right\|_{p}^{p}-a_{0}\left(\frac{2}{M}\right)^{\mu}\left(\left\|u_{1}\right\|_{\infty}^{\mu}+\left\|u_{2}\right\|_{\infty}^{\mu}\right) \int_{0}^{T} b(t) d t-a_{0} \int_{0}^{T} b(t) d t \\
\geq & \frac{1}{2 q} \min \left(1, C^{-q}\right)\left\|u_{1}\right\|_{W}^{q}+\frac{1}{2 p} \min \left(1, C^{-p}\right)\left\|u_{2}\right\|_{W}^{p} \\
& -a_{0}\left(\frac{2 C}{M}\right)^{\mu} \int_{0}^{T} b(t) d t\left(\left\|u_{1}\right\|_{W}^{\mu}+\left\|u_{2}\right\|_{W}^{\mu}\right)-a_{0} \int_{0}^{T} b(t) d t
\end{aligned}
$$

for all $\left(u_{1}, u_{2}\right) \in \widetilde{W}$, then we get $\left(\varphi_{1}\right)$ taking into account that $\mu<r=\min (q, p)$.
By (3) and (4), we have for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}\right) & =-\int_{0}^{T} F\left(t, x_{1}, x_{2}\right) d t \\
& \leq-\int_{E} F\left(t, x_{1}, x_{2}\right) d t-\int_{[0, T] \backslash E} g(t) d t \\
& \leq-\int_{E} F\left(t, x_{1}, x_{2}\right) d t+\int_{0}^{T}|g(t)| d t \rightarrow-\infty
\end{aligned}
$$

then we get $\left(\varphi_{2}\right)$. Now, from the Saddle Point Theorem it follows that Theorem 1 holds.

Proof of Theorem 3. First, we prove that the functional φ satisfies condition (C). Let $\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ be a sequence in W such that $\varphi\left(u_{1 n}, u_{2 n}\right)$ is bounded and $\left\|\varphi^{\prime}\left(u_{1 n}, u_{2 n}\right)\right\| \times\left(1+\left\|\left(u_{1 n}, u_{2 n}\right)\right\|\right) \rightarrow 0$ as $n \rightarrow \infty$. In a way similar to (9), (10) and (11) in the proof of Lemma 8, we have

$$
\begin{gather*}
\int_{0}^{T} F\left(t, u_{1 n}, u_{2 n}\right) d t \leq C_{2}, \quad\left\|\dot{u}_{1 n}\right\|_{q} \leq C_{3}, \quad\left\|\dot{u}_{2 n}\right\|_{p} \leq C_{3} \\
\left\|\tilde{u}_{1 n}\right\|_{\infty} \leq C_{4}, \quad\left\|\tilde{u}_{2 n}\right\|_{\infty} \leq C_{4} \tag{17}
\end{gather*}
$$

for all $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
C_{2} & \geq \int_{0}^{T} F\left(t, u_{1 n}, u_{2 n}\right) d t \geq \frac{1}{\gamma} \int_{0}^{T} F\left(t, \beta \bar{u}_{1 n}, \beta \bar{u}_{2 n}\right) d t-\int_{0}^{T} F\left(t,-\tilde{u}_{1 n},-\tilde{u}_{2 n}\right) d t \\
& \geq \frac{1}{\gamma} \int_{0}^{T} F\left(t, \beta \bar{u}_{1 n}, \beta \bar{u}_{2 n}\right) d t-\max _{\left|x_{1}\right| \leq 2 C_{4},\left|x_{2}\right| \leq 2 C_{4}}\left[a_{1}\left(\left|x_{1}\right|\right)+a_{2}\left(\left|x_{2}\right|\right)\right] \int_{0}^{T} b(t) d t
\end{aligned}
$$

for all $n \in \mathbb{N}$, which implies that $\left\{\left(\bar{u}_{1 n}, \bar{u}_{2 n}\right)\right\}$ is bounded. From (17) we get $\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ is bounded. Like in the proof of Lemma 8 we can prove that $\left\{\left(u_{1 n}, u_{2 n}\right)\right\}$ have a convergent subsequence, so φ satisfies condition (C). Also $\left(\varphi_{1}\right)$ holds for the same reasons like in the proof of Theorem 1, and $\left(\varphi_{2}\right)$ follows directly from (5). Hence Theorem 3 holds using again the Saddle Point Theorem.

References

1. E. Hewitt and K. Stromberg - Real and Abstract Analysis, Springer, New York, 1965.
2. P. Jebelean and R. Precup -Solvability of $p, q-L a p l a c i a n ~ s y s t e m s ~ w i t h ~ p o t e n t i a l ~ b o u n d a r y ~$ conditions, Appl.Anal. (2009) (in press).
3. J. Mawhin and M. Willem - Critical Point Theory and Hamiltonian Systems, SpringerVerlag, Berlin/New York, 1989.
4. D. Paşca - Periodic Solutions for Second Order Differential Inclusions, Communications on Applied Nonlinear Analysis, 64 (1999) 91-98.
5. D. Paşca - Periodic Solutions for Second Order Differential Inclusions with Sublinear Nonlinearity, PanAmerican Mathematical Journal, vol. 10, nr. 4 (2000) 35-45.
6. D. Paşca - Periodic Solutions of a Class of Non-autonomous Second Order Differential Inclusions Systems, Abstract and Applied Analysis, vol. 6, nr. 3 (2001) 151-161.
7. D. Paşca - Periodic solutions of second-order differential inclusions systems with p Laplacian, J. Math. Anal. Appl., vol. 325, nr. 1 (2007) 90-100.
8. D. Paşca-Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-Laplacian, Bulletin of the Belgian Mathematical Society - Simon Stevin (2009) (in press).
9. D. Paşca and C.-L. Tang - Subharmonic solutions for nonautonomous sublinear second order differential inclusions systems with p-Laplacian, Nonlinear Analysis: Theory, Methods \& Applications, 69 (2008) 1083-1090.
10. D. Paşca and C.-L. Tang - Some existence results on periodic solutions of nonautonomous second order differential systems with (q,p)-Laplacian, Appl.Math.Letters, 23 (2010) 246251.
11. P. H. Rabinowitz - Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. No. 65, AMS, Providence, RI, 1986.
12. C.-L. Tang - Periodic Solutions of Non-autonomous Second-Order Systems with γ Quasisubadditive Potential, J. Math. Anal. Appl., 189 (1995), 671-675.
13. C.-L. Tang - Periodic Solutions of Non-autonomous Second Order Systems, J. Math. Anal. Appl., 202 (1996), 465-469.
14. C.-L. Tang - Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity, Proc. AMS, 126 (1998), 3263-3270.
15. C.-L. Tang - Existence and Multiplicity of Periodic Solutions of Nonautonomous Second Order Systems, Nonlinear Analysis, 32 (1998), 299-304.
16. Y. Tian and W. Ge - Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Analysis 66 (2007), 192-203.
17. J. Ma and C.-L. Tang - Periodic Solutions for Some Nonautonomous Second-Order Systems, J. Math. Anal. Appl. 275 (2002), 482-494.
18. X.-P. Wu - Periodic Solutions for Nonautonomous Second-Order Systems with Bounded Nonlinearity, J. Math. Anal. Appl. 230 (1999), 135-141.
19. X.-P. Wu and C.-L. Tang - Periodic Solutions of a Class of Non-autonomous Second-Order Systems, J. Math. Anal. Appl. 236 (1999), 227-235.
20. X.-P. Wu and C.-L. Tang - Periodic Solutions of Nonautonomous Second-Order Hamiltonian Systems with Even-Typed Potentials, Nonlinear Analysis 55 (2003), 759-769.
21. F. Zhao and X. Wu - Saddle Point Reduction Method for Some Non-autonomous Second Order Systems, J. Math. Anal. Appl. 291 (2004), 653-665.
22. C.-L. Tang and X.-P. Wu - Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential, J. Math. Anal. Appl. 259 (2001), 386-397.
23. C.-L. Tang and X.-P. Wu - Notes on Periodic Solutions of Subquadratic Second Order Systems, J. Math. Anal. Appl. 285 (2003), 8-16.
24. C.-L. Tang and X.-P. Wu - Subharmonic Solutions for Nonautonomous Second Order Hamiltonian Systems, J. Math. Anal. Appl. 304 (2005), 383-393.
25. B. Xu and C.-L. Tang - Some existence results on periodic solutions of ordinary $p-$ Laplacian systems, J.Math.Anal.Appl. 333 (2007) 1228-1236.

Daniel Paşca

Department of Mathematics and Informatics, University of Oradea, University Street 1, 410087 Oradea, Romania.
e-mail: dpasca@uoradea.ro

Chun-Lei Tang

School of Mathematics and Statistics, Southwest University, Chongqing 400715, People's Republic of China.
e-mail: tangcl@swu.edu.cn

[^0]: Received April 13, 2010. Revised June 7, 2010. Accepted June 10, 2010. * Corresponding author. ${ }^{\dagger}$ Supported by National Natural Science Foundation of China(No. 10771173)
 (C) 2011 Korean SIGCAM and KSCAM.

