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Abstract. Some existence theorems are obtained for periodic solutions of
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1. Introduction

In the last years many authors starting with Mawhin and Willem (see [3])
proved the existence of solutions for problem

ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

under suitable conditions on the potential F (see [12]-[24]). Also in a series of
papers (see [4]-[6]) we have generalized some of these results for the case when
the potential F is just locally Lipschitz in the second variable x not continuously
differentiable. Very recent (see [7] and [9]) we have considered the second order
Hamiltonian inclusions systems with p–Laplacian.

The aim of this paper is to show how the results obtained in [25] can be
generalized. More exactly our results represent the extensions to second-order
differential systems with (q, p)–Laplacian. As far as we know this kind of systems
have been considered recently just in a few papers [2], [8] and [10].
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40 Daniel Paşca and Chun-Lei Tang

Consider the second order system




− d
dt

(|u̇1(t)|q−2u̇1(t)
)
= ∇u1F (t, u1(t), u2(t)),

− d
dt

(|u̇2(t)|p−2u̇2(t)
)
= ∇u2F (t, u1(t), u2(t)) a.e. t ∈ [0, T ],

u1(0)− u1(T ) = u̇1(0)− u̇1(T ) = 0,
u2(0)− u2(T ) = u̇2(0)− u̇2(T ) = 0,

(1)

where 1 < p, q < ∞, T > 0, and F : [0, T ]× RN × RN → R satisfy the following
assumption (A):

• F is measurable in t for each (x1, x2) ∈ RN × RN;
• F is continuously differentiable in (x1, x2) for a.e. t ∈ [0, T ];
• there exist a1, a2 ∈ C(R+,R+) and b ∈ L1(0, T ;R+) such that

|F (t, x1, x2)|, |∇x1F (t, x1, x2)|, |∇x2F (t, x1, x2)| ≤
[
a1(|x1|) + a2(|x2|)

]
b(t)

for all (x1, x2) ∈ RN × RN and a.e. t ∈ [0, T ].

Following Tang and Wu [23], we generalize subquadratic condition in Rabi-
nowitz’s sense, that is, there exist 0 < µ < r = min(q, p), M > 0 such that

(∇(x1,x2)F (t, x1, x2), (x1, x2)) ≤ µF (t, x1, x2) (2)

for all |(x1, x2)| ≥ M and a.e. t ∈ [0, T ]. We prove that under condition (2)
and some other suitable conditions, the corresponding energy functional also
satisfies (C) condition. Then we get some existence results for problem (1) by
the Saddle Point Theorem in critical point theory. The main results are the
following theorems.

Theorem 1. Suppose that F satisfies assumptions (A) and (2). Assume that
there exists g ∈ L1(0, T ) such that

F (t, x1, x2) ≥ g(t) (3)

for all (x1, x2) ∈ RN × RN, and that there exists a subset E of [0, T ] with
meas(E) > 0, such that

F (t, x1, x2) → +∞ as |x| =
√
|x1|2 + |x2|2 → ∞ (4)

for a.e. t ∈ E. Then problem (1) has at least one solution in W = W 1,q
T ×W 1,p

T .

Corollary 2. Suppose that F satisfies assumptions (A) and (2). Assume that

F (t, x1, x2) → +∞ as |x| =
√
|x1|2 + |x2|2 → ∞

uniformly for a.e. t ∈ [0, T ]. Then problem (1) has at least one solution in

W = W 1,q
T ×W 1,p

T .

Theorem 3. Suppose that F satisfies assumptions (A), (2) and
∫ T

0

F (t, x1, x2) → +∞ as |x| =
√
|x1|2 + |x2|2 → ∞. (5)
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Assume that F (t, ·, ·) is (β, γ)–subconvex for a.e. t ∈ [0, T ] with β > 0, γ > 0,
that is,

F (t, β((x1, x2) + (y1, y2))) ≤ γ
(
F (t, x1, x2) + F (t, y1, y2)

)
(6)

for all (x1, x2), (y1, y2) ∈ RN × RN. Then problem (1) has at least one solution

in W = W 1,q
T ×W 1,p

T .

Remark 1. Theorems 1 and 3 generalizes Theorem 1 and 2 of Xu and Tang
[25]. In fact, it follows from our theorems by letting F (t, x1, x2) = F1(t, x1).

2. The proofs of the theorems

We introduce some functional spaces. Let T > 0 be a positive number and
1 < q, p < ∞. We use | · | to denote the Euclidean norm in RN. We denote by

W 1,p
T the Sobolev space of functions u ∈ Lp(0, T ;RN) having a weak derivative

u̇ ∈ Lp(0, T ;RN). The norm in W 1,p
T is defined by

‖u‖W 1,p
T

=
(∫ T

0

(|u(t)|p + |u̇(t)|p)dt
) 1

p

.

It follows from [3] that W 1,p
T is a reflexive and uniformly convex Banach space.

From [1], we know that a locally uniformly convex Banach space X has the
Kadec-Klee property, that is, for any sequence {un} such that un ⇀ u weakly in
X and ‖un‖ → ‖u‖, we have un → u strongly in X. We will use this property
later.

Moreover, we use the space W defined by

W = W 1,q
T ×W 1,p

T

with the norm ‖(u1, u2)‖W = ‖u1‖W 1,q
T

+ ‖u2‖W 1,p
T

. It is clear that W is a

reflexive Banach space.
We recall that

‖u‖p =
(∫ T

0

|u(t)|pdt
) 1

p

and ‖u‖∞ = max
t∈[0,T ]

|u(t)|.

For our aims it is necessary to recall some very well know results (for proof
and details see [3]).

Proposition 4. Each u ∈ W 1,p
T can be written as u(t) = ū+ ũ(t) with

ū =
1

T

∫ T

0

u(t)dt,

∫ T

0

ũ(t)dt = 0.

We have the Sobolev’s inequality

‖ũ‖∞ ≤ C‖u̇‖p, ‖ṽ‖∞ ≤ C‖v̇‖q for each u ∈ W 1,p
T , v ∈ W 1,q

T ,

and Wirtinger’s inequality

‖ũ‖p ≤ C‖u̇‖p, ‖ṽ‖q ≤ C‖v̇‖q for each u ∈ W 1,p
T , v ∈ W 1,q

T .
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In [16] the authors have proved the following result (see Lemma 3.1) which
generalize a very well known result proved by Jean Mawhin and Michel Willem
(see Theorem 1.4 in [3]):

Lemma 5. Let L : [0, T ] × RN × RN × RN × RN → R, (t, x1, x2, y1, y2) →
L(t, x1, x2, y1, y2) be measurable in t for each (x1, x2, y1, y2), and continuously
differentiable in (x1, x2, y1, y2) for a.e. t ∈ [0, T ]. If there exist ai ∈ C(R+,R+),
b ∈ L1(0, T ;R+), and c1 ∈ Lp(0, T ;R+), c2 ∈ Lq(0, T ;R+), 1 < p, q < ∞, such
that for a.e. t ∈ [0, T ] and every (x1, x2, y1, y2) ∈ RN × RN × RN × RN, one has

|L(t, x1, x2, y1, y2)| ≤
[
a1(|x1|) + a2(|x2|)

][
b(t) + |y1|q + |y2|p

]
,

|Dx1L(t, x1, x2, y1, y2)| ≤
[
a1(|x1|) + a2(|x2|)

][
b(t) + |y2|p

]
,

|Dx2L(t, x1, x2, y1, y2)| ≤
[
a1(|x1|) + a2(|x2|)

][
b(t) + |y1|q

]
,

|Dy1L(t, x1, x2, y1, y2)| ≤
[
a1(|x1|) + a2(|x2|)

][
c1(t) + |y1|q−1

]
,

|Dy2L(t, x1, x2, y1, y2)| ≤
[
a1(|x1|) + a2(|x2|)

][
c2(t) + |y2|p−1

]
,

then the function ϕ : W 1,q
T ×W 1,p

T → R defined by

ϕ(u1, u2) =

∫ T

0

L(t, u1(t), u2(t), u̇1(t), u̇2(t))dt

is continuously differentiable on W 1,q
T ×W 1,p

T and

〈ϕ′(u1, u2), (v1, v2)〉 =
∫ T

0

[
(Dx1L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v1(t))

+ (Dy1L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇1(t))

+ (Dx2L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v2(t))

+ (Dy2L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇2(t))
]
dt.

Corollary 6. Let L : [0, T ]× RN × RN × RN × RN → R be defined by

L(t, x1, x2, y1, y2) =
1

q
|y1|q + 1

p
|y2|p − F (t, x1, x2)

where F : [0, T ]×RN×RN → R satisfy condition (A). If (u1, u2) ∈ W 1,q
T ×W 1,p

T

is a solution of the corresponding Euler equation ϕ′(u1, u2) = 0, then (u1, u2) is
a solution of (1).

Remark 2. The function ϕ : W → R given by

ϕ(u1, u2) =
1

q

∫ T

0

|u̇1|qdt+ 1

p

∫ T

0

|u̇2|pdt−
∫ T

0

F (t, u1, u2)dt

for all (u1, u2) ∈ W , is weakly lower semi-continuous (w.l.s.c.) on W as the sum
of two convex continuous functions and of a weakly continuous one. Moreover,
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one has

〈ϕ′(u1, u2), (v1, v2)〉 =
∫ T

0

(|u̇1|q−2u̇1, v̇1
)
dt+

∫ T

0

(|u̇2|p−2u̇2, v̇2
)
dt

−
∫ T

0

(∇(u1,u2)F (t, u1, u2), (v1, v2)
)
dt

for all (u1, u2), (v1, v2) ∈ W .

Lemma 7. ([25]) In Sobolev space W 1,p
T , for u ∈ W 1,p

T , ‖u‖ → ∞ if and only if(|ū|p + ∫ T

0
|u̇|pdt)1/p → ∞.

Lemma 8. Under conditions (A), (2), (3) and (4), the functional ϕ satisfies
condition (C), that is, {(u1n, u2n)} has a convergent subsequence in W whenever
ϕ(u1n, u2n) is bounded and ‖ϕ′(u1n, u2n)‖ × (1 + ‖(u1n, u2n)‖) → 0 as n → ∞.

Proof. Let {(u1n, u2n)} be a sequence in W such that ϕ(u1n, u2n) is bounded
and ‖ϕ′(u1n, u2n)‖ × (1 + ‖(u1n, u2n)‖) → 0 as n → ∞. Then there exists a
constant C1 such that

|ϕ(u1n, u2n)| ≤ C1, ‖ϕ′(u1n, u2n)‖(1 + ‖(u1n, u2n)‖) ≤ C1 (7)

for all n ∈ N. Let
h(t) = (r +M)b(t) max

|(x1,x2)|≤M

[
a1(|x1|) + a2(|x2|)

]
.

Then, by assumption (A) and (2), one has

− h(t) + (∇(x1,x2)F (t, x1, x2), (x1, x2)) ≤ µF (t, x1, x2) (8)

for all (x1, x2) ∈ RN × RN and a.e. t ∈ [0, T ]. It follows that

(r + 1)C1 ≥ ‖ϕ′(u1n, u2n)‖(1 + ‖(u1n, u2n)‖)− rϕ(u1n, u2n)

≥(ϕ′(u1n, u2n), (u1n, u2n))− rϕ(u1n, u2n)

≥
∫ T

0

[
rF (t, u1n, u2n)− (∇(x1,x2)F (t, u1n, u2n), (u1n, u2n))

]
dt

≥(r − µ)

∫ T

0

F (t, u1n, u2n)dt−
∫ T

0

h(t)dt

for all n ∈ N, which implies that
∫ T

0

F (t, u1n, u2n) ≤ C2 (9)

for all n ∈ N and some constant C2. By (7) and (9), one has

C1 ≥ ϕ(u1n, u2n) ≥ 1

q

∫ T

0

|u̇1n|qdt+ 1

p

∫ T

0

|u̇2n|pdt− C2

for all n ∈ N. Hence we have∫ T

0

|u̇1n|qdt ≤ C3 and

∫ T

0

|u̇2n|pdt ≤ C3 (10)
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for all n ∈ N and some constant C3. By Sobolev’s inequality, we get

‖ũ1n‖∞ ≤ C4 and ‖ũ2n‖∞ ≤ C4 (11)

for all n ∈ N and some constant C4.
We argue that the sequence {(ū1n, ū2n)} is bounded. Otherwise, there is

a subsequence, again denoted by {(ū1n, ū2n)}, such that |(ū1n, ū2n)| → ∞ as
n → ∞. Let

(v1n, v2n) =
(u1n, u2n)

‖(u1n, u2n)‖W
=

(ū1n, ū2n)

‖(u1n, u2n)‖W +
(ũ1n, ũ2n)

‖(u1n, u2n)‖W
= (v̄1n, v̄2n) + (ṽ1n, ṽ2n).

Then, {(v1n, v2n)} is bounded in W and by the compactness of the embedding

W = W 1,q
T ×W 1,p

T ⊂ C([0, T ];RN)×C([0, T ];RN), there is a subsequence, again
denoted by {(v1n, v2n)}, such that

(v1n, v2n) ⇀ (v1, v2) weakly in W,

(v1n, v2n) → (v1, v2) strongly in C([0, T ];RN)× C([0, T ];RN).

By (11), {(ũ1n, ũ2n)} is bounded in C([0, T ];RN) × C([0, T ];RN), so (v1, v2) ∈
RN × RN and (v1, v2) 6= (0, 0). Thus |(u1n(t), u2n(t))| → ∞ as n → ∞, for all
t ∈ [0, T ]. From (4) and Lebesgue-Fatou Lemma, we have

lim inf
n→∞

∫ T

0

F (t, u1n, u2n)dt ≥ lim inf
n→∞

∫

E

F (t, u1n, u2n)dt−
∫ T

0

|g(t)|dt = +∞,

which contradicts (9).
Then, by Lemma 7 {(u1n, u2n)} is bounded in W . By the compactness of the

embedding W 1,q
T ( or W 1,p

T ) ⊂ C([0, T ];RN), the sequence {u1n}( or {u2n}) has
a subsequence, still denoted by {u1n}( or {u2n}) , such that

u1n( or u2n) ⇀ u1( or u2) weakly in W 1,q
T ( or W 1,p

T ) , (12)

u1n → u1 strongly in C([0, T ];RN). (13)

Note that

〈ϕ′(u1n, u2n), (u1 − u1n, 0)〉 =
∫ T

0

|u̇1n|q−2(u̇1n, u̇1 − u̇1n)dt

−
∫ T

0

(∇x1F (t, u1n, u2n), u1 − u1n)dt → 0
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as n → ∞. From (13), {u1n} is bounded in C([0, T ];RN). Then we have∣∣∣∣∣
∫ T

0

(∇x1
F (t, u1n, u2n), u1 − u1n)dt

∣∣∣∣∣ ≤
∫ T

0

|∇x1
F (t, u1n, u2n)| · |u1 − u1n|dt

≤ C5

∫ T

0

b(t)|u1 − u1n|dt
≤ C5‖b‖L1‖u1 − u1n‖∞

for some positive constant C5, which combined with (13) implies that
∫ T

0

(∇x1
F (t, u1n, u2n), u1 − u1n)dt → 0 as n → ∞.

Hence one has ∫ T

0

|u̇1n|q−2(u̇1n, u̇1 − u̇1n)dt → 0 as n → ∞ .

Moreover from (13) we obtain
∫ T

0

|u1n|q−2(u1n, u1 − u1n)dt → 0 as n → ∞ .

Set

ψ(u1, u2) =
1

q

(∫ T

0

|u1|qdt+
∫ T

0

|u̇1|qdt
)

+
1

p

(∫ T

0

|u2|pdt+
∫ T

0

|u̇2|pdt
)
.

Then one obtains

〈ψ′(u1n, u2n), (u1 − u1n, 0)〉 =
∫ T

0

|u1n|q−2(u1n, u1 − u1n)dt

+

∫ T

0

|u̇1n|q−2(u̇1n, u̇1 − u̇1n)dt ,

and

〈ψ′(u1n, u2n), (u1 − u1n, 0)〉 → 0 as n → ∞ . (14)

By the Hölder’s inequality, we have

0 ≤ (‖u1n‖q−1 − ‖u1‖q−1)(‖u1n‖ − ‖u1‖) ≤ 〈ψ′(u1n, u2n)− ψ′(u1, u2), u1n − u1〉
which together with (14) yields ‖u1n‖ → ‖u1‖. It follows that u1n → u1 strongly

in W 1,q
T by the uniform convexity of W 1,q

T . Similarly we have u2n → u2 strongly

in W 1,p
T . Hence the (C) condition is satisfied. 2

Proof of Theorem 1. Let W̃ = W̃ 1,q
T × W̃ 1,p

T be the subspace of W given by

W̃ = {(u1, u2) ∈ W | (ū1, ū2) = (0, 0)}. Then W = W̃ + RN × RN. For using
the Saddle Point Theorem(see [11] or [3]) we have only to prove that

(ϕ1) ϕ(u1, u2) → +∞ as ‖(u1, u2)‖ → ∞ in W̃ ,
(ϕ2) ϕ(u1, u2) → −∞ as ‖(u1, u2)‖ → ∞ in RN × RN.
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For every |(x1, x2)| ≥ M and a.e. t ∈ [0, T ], let

y(s) = F (t, sx1, sx2), Q(s) = y′(s)− µ

s
y(s). (15)

Then by (2) we have

Q(s) =
1

s

[
(∇(x1,x2)F (t, sx1, sx2), (sx1, sx2))− µF (t, sx1, sx2)

]
≤ 0 (16)

for all s ≥ M/|(x1, x2)|. It follows from (15) that y(s) = F (t, sx1, sx2) is a
solution of the first order linear ordinary differential equation

y′(s) =
µ

s
y(s) +Q(s)

which implies that

F (t, sx1, sx2) = sµ
(∫ s

1

r−µQ(r)dr + F (t, x1, x2)
)

for s ≥ M/|(x1, x2)|. Moreover, by assumption (A) and (16), we have

a0b(t) ≥ F
(
t,

Mx1

|(x1, x2)| ,
Mx2

|(x1, x2)|
)
≥

( M

|(x1, x2)|
)µ

F (t, x1, x2)

for all |(x1, x2)| ≥ M , a.e. t ∈ [0, T ] and some constant
a0 = max|(x1,x2)|≤M

[
a1(|x1|) + a2(|x2|)

]
, which implies that

F (t, x1, x2) ≤ a0b(t)
(( |(x1, x2)|

M

)µ

+ 1
)

for all (x1, x2) ∈ RN × RN and a.e. t ∈ [0, T ]. By Sobolev’s inequality and
Wirtinger’s inequality, we have

ϕ(u1, u2) ≥ 1

q
‖u̇1‖qq + 1

p
‖u̇2‖pp − a0

(
2

M

)µ(
‖u1‖µ∞ + ‖u2‖µ∞

) ∫ T

0

b(t)dt− a0

∫ T

0

b(t)dt

≥ 1

2q
min(1, C−q)‖u1‖qW +

1

2p
min(1, C−p)‖u2‖pW

− a0

(
2C

M

)µ
∫ T

0

b(t)dt
(
‖u1‖µW + ‖u2‖µW

)
− a0

∫ T

0

b(t)dt

for all (u1, u2) ∈ W̃ , then we get (ϕ1) taking into account that µ < r = min(q, p).
By (3) and (4), we have for (x1, x2) ∈ RN × RN

ϕ(x1, x2) = −
∫ T

0

F (t, x1, x2)dt

≤ −
∫

E

F (t, x1, x2)dt−
∫

[0,T ]\E
g(t)dt

≤ −
∫

E

F (t, x1, x2)dt+

∫ T

0

|g(t)|dt → −∞

then we get (ϕ2). Now, from the Saddle Point Theorem it follows that Theorem
1 holds. 2
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Proof of Theorem 3. First, we prove that the functional ϕ satisfies condition
(C). Let {(u1n, u2n)} be a sequence in W such that ϕ(u1n, u2n) is bounded and
‖ϕ′(u1n, u2n)‖ × (1 + ‖(u1n, u2n)‖) → 0 as n → ∞. In a way similar to (9), (10)
and (11) in the proof of Lemma 8, we have

∫ T

0

F (t, u1n, u2n)dt ≤ C2, ‖u̇1n‖q ≤ C3, ‖u̇2n‖p ≤ C3,

‖ũ1n‖∞ ≤ C4, ‖ũ2n‖∞ ≤ C4, (17)

for all n ∈ N. Then we have

C2 ≥
∫ T

0

F (t, u1n, u2n)dt ≥ 1

γ

∫ T

0

F (t, βū1n, βū2n)dt−
∫ T

0

F (t,−ũ1n,−ũ2n)dt

≥ 1

γ

∫ T

0

F (t, βū1n, βū2n)dt− max
|x1|≤2C4,|x2|≤2C4

[
a1(|x1|) + a2(|x2|)

] ∫ T

0

b(t)dt

for all n ∈ N, which implies that {(ū1n, ū2n)} is bounded. From (17) we get
{(u1n, u2n)} is bounded. Like in the proof of Lemma 8 we can prove that
{(u1n, u2n)} have a convergent subsequence, so ϕ satisfies condition (C). Also
(ϕ1) holds for the same reasons like in the proof of Theorem 1, and (ϕ2) fol-
lows directly from (5). Hence Theorem 3 holds using again the Saddle Point
Theorem. 2
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