DOI QR코드

DOI QR Code

Au와 탄소나노튜브 복합체 전극의 연성 향상

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes

  • 우정민 (연세대학교 신소재공학부) ;
  • 전주희 (연세대학교 신소재공학부) ;
  • 강지연 (연세대학교 신소재공학부) ;
  • 이태일 (연세대학교 신소재공학부) ;
  • 명재민 (연세대학교 신소재공학부)
  • Woo, Jung-Min (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Jeon, Joo-Hee (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Kang, Ji-Yeon (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Tae-Il (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Myoung, Jae-Min (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2010.12.23
  • 심사 : 2011.01.10
  • 발행 : 2011.03.27

초록

Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.

키워드

참고문헌

  1. C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer and A. Meyer, Sol. Energ. Mater. Sol. Cell., 91(5), 379 (2007). https://doi.org/10.1016/j.solmat.2006.10.013
  2. W. Y. Wu, X. Zhong, W. Wang, Q. Miao and J. J. Zhu, Electrochem. Comm., 12(11), 1600 (2010). https://doi.org/10.1016/j.elecom.2010.09.005
  3. G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. -H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens and D. M. de Leeuw, Nat. Mater., 3, 106 (2004). https://doi.org/10.1038/nmat1061
  4. J. Jeon, T. I. Lee, J. H. Choi, J. P. Kar, W. J. Choi, H. K. Baik and J. M. Myoung, Electrochem. Solid State Lett., 14(2), H76 (2011). https://doi.org/10.1149/1.3505361
  5. H. Huang and F. Spaepen, Acta Mater., 48, 3261 (2000). https://doi.org/10.1016/S1359-6454(00)00128-2
  6. S. H Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet and D. Poulikakos, Nanotechnology, 18(34), 345202 (2007). https://doi.org/10.1088/0957-4484/18/34/345202
  7. S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, Appl. Phys. Lett., 82(15), 2404 (2003). https://doi.org/10.1063/1.1565683
  8. J. Jeon, J. H. Choi, K. J. Moon, T. I. Lee, H. Moon, H. Y. Kim and J. M. Myoung, Kor. J. Mater. Res. 20(2), 51 (2010). https://doi.org/10.3740/MRSK.2010.20.2.51
  9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi and Byung Hee Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  10. S. De, P. E. Lyons, S. Sorel, E. M. Doherty, P. J. King, W. J. Blau, P. N. Nirmalraj, J. J. Boland, V. Scardaci, J. Joimel and J. N. Coleman, ACS Nano, 3(3), 714 (2009). https://doi.org/10.1021/nn800858w
  11. S. H. Ng, J. Wang, Z. P. Guo, J. Chen, G. X. Wang and H. K. Liu, Electrochim. Acta, 51(1), 23 (2005). https://doi.org/10.1016/j.electacta.2005.04.045
  12. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson and J. E. Fischer, Appl. Phys. Lett., 80(15), 2767 (2002). https://doi.org/10.1063/1.1469696
  13. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson and A. G. Yodh, Nano Letters, 3(2), 269 (2003). https://doi.org/10.1021/nl025924u
  14. S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo and Y. H. Lee, Appl. Phys. Lett., 95(26), 264103 (2009). https://doi.org/10.1063/1.3255016