DOI QR코드

DOI QR Code

Application of MALDI Tissue Imaging of Drugs and Metabolites: A New Frontier for Molecular Histology

  • Shanta, Selina Rahman (Department of Molecular Biotechnology, WCU Program, Konkuk University) ;
  • Kim, Young-Jun (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Young-Hwan (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Kwang-Pyo (Department of Molecular Biotechnology, WCU Program, Konkuk University)
  • Received : 2011.01.23
  • Accepted : 2011.04.13
  • Published : 2011.04.30

Abstract

Matrix assisted laser desorption ionization (MALDI) mass spectrometry is commonly used to analyze biological molecules such as proteins, peptides and lipids from cells or tissue. Recently MALDI Imaging mass spectrometry (IMS) has been widely applied for the identification of different drugs and their metabolites in tissue. This special feature has made MALDI-MS a common choice for investigation of the molecular histology of pathological samples as well as an important alternative to other conventional imaging methods. The basic advantages of MALDI-IMS are its simple technique, rapid acquisition, increased sensitivity and most prominently, its capacity for direct tissue analysis without prior sample preparation. Moreover, with ms/ms analysis, it is possible to acquire structural information of known or unknown analytes directly from tissue sections. In recent years, MALDI-IMS has made enormous advances in the pathological field. Indeed, it is now possible to identify various changes in biological components due to disease states directly on tissue as well as to analyze the effect of treated drugs. In this review, we focus on the advantages of MALDI tissue imaging over traditional methods and highlight some motivating findings that are significant in pathological studies.

Keywords

References

  1. Adibhatla, R. M., Hatcher, J. F. and Dempsey, R. J. (2006) Lipids and lipidomics in brain injury and diseases. AAPS J. 8, E314-321. https://doi.org/10.1208/aapsj080236
  2. Aravagiri, M., Teper, Y. and Marder, S. R. (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm. Drug Dispos. 20, 369-377. https://doi.org/10.1002/1099-081X(199911)20:8<369::AID-BDD200>3.0.CO;2-6
  3. Ariga, T., McDonald, M. P. and Yu, R. K. (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J. Lipid. Res. 49, 1157-1175. https://doi.org/10.1194/jlr.R800007-JLR200
  4. Caprioli, R. M., Farmer, T. B. and Gile, J. (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751-4760. https://doi.org/10.1021/ac970888i
  5. Chan, K., Lanthier, P., Liu, X., Sandhu, J. K., Stanimirovic, D. and Li, J. (2009) MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal. Chim. Acta. 639, 57-61. https://doi.org/10.1016/j.aca.2009.02.051
  6. Chaurand, P., Schwartz, S. A., Reyzer, M. L. and Caprioli, R. M. (2005) Imaging mass spectrometry: principles and potentials. Toxicol. Pathol. 33, 92-101. https://doi.org/10.1080/01926230590881862
  7. Chaurand, P., Stoeckli, M. and Caprioli, R. M. (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal. Chem. 71, 5263-5270. https://doi.org/10.1021/ac990781q
  8. Cornett, D. S., Frappier, S. L. and Caprioli, R. M. (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 80, 5648-5653. https://doi.org/10.1021/ac800617s
  9. Deckert, V., Brunet, A., Lantoine, F., Lizard, G., Millanvoye-van Brussel, E., Monier, S., Lagrost, L., David-Dufi lho, M., Gambert, P. and Devynck, M. A. (1998) Inhibition by cholesterol oxides of NO release from human vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 1054-1060. https://doi.org/10.1161/01.ATV.18.7.1054
  10. Farooqui, A. A. and Horrocks, L. A. (1985) On the role of sulfolipids in mammalian metabolism. Mol. Cell Biochem. 66, 87-95.
  11. Farooqui, A. A., Horrocks, L. A. and Farooqui, T. (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids. 106, 1-29. https://doi.org/10.1016/S0009-3084(00)00128-6
  12. Hayasaka, T., Goto-Inoue, N., Sugiura, Y., Zaima, N., Nakanishi, H., Ohishi, K., Nakanishi, S., Naito, T., Taguchi, R. and Setou, M. (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun. Mass. Spectrom. 22, 3415-3426. https://doi.org/10.1002/rcm.3751
  13. Jeyakumar, M., Dwek, R. A., Butters, T. D. and Platt, F. M. (2005) Storage solutions: treating lysosomal disorders of the brain. Nat. Rev. Neurosci. 6, 713-725.
  14. Khatib-Shahidi, S., Andersson, M., Herman, J. L., Gillespie, T. A. and Caprioli, R.M. (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 78, 6448-6456. https://doi.org/10.1021/ac060788p
  15. Kim, Y., Shanta, S. R., Zhou, L. H. and Kim, K. P. (2010) Mass spectrometry based cellular phosphoinositides profi ling and phospholipid analysis: a brief review. Exp. Mol. Med. 42, 1-11. https://doi.org/10.3858/emm.2010.42.1.001
  16. Koizumi, S., Yamamoto, S., Hayasaka, T., Konishi, Y., Yamaguchi-Okada, M., Goto-Inoue, N., Sugiura, Y., Setou, M. and Namba, H. (2010) Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience. 168, 219-225. https://doi.org/10.1016/j.neuroscience.2010.03.056
  17. Lee, J. M., Grabb, M. C., Zipfel, G. J. and Choi, D. W. (2000) Brain tissue responses to ischemia. J. Clin. Invest. 106, 723-731. https://doi.org/10.1172/JCI11003
  18. Lee, J. R., Lee, S. J., Kim, T. W., Kim, J. K., Park, H. S., Kim, D. E., Kim, K. P. and Yeo, W. S. (2009) Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal. Chem. 81, 6620-6626. https://doi.org/10.1021/ac9005099
  19. Murphy, R. C., Hankin, J. A. and Barkley, R. M. (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res. 50(Suppl), S317-322.
  20. Murugesan, G., Sandhya Rani, M. R., Gerber, C. E., Mukhopadhyay, C., Ransohoff, R. M., Chisolm, G. M. and Kottke-Marchant, K. (2003) Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. J. Mol. Cell Cardiol. 35, 1375-1384. https://doi.org/10.1016/j.yjmcc.2003.08.004
  21. Mutoh, T., Hirabayashi, Y., Mihara, T., Ueda, M., Koga, H., Ueda, A., Kokura, T. and Yamamoto, H. (2006) Role of glycosphingolipids and therapeutic perspectives on Alzheimer's disease. CNS Neurol. Disord. Drug Targets. 5, 375-380. https://doi.org/10.2174/187152706777950710
  22. Schwamborn, K. and Caprioli, R. M. (2010) Molecular imaging by mass spectrometry--looking beyond classical histology. Nat. Rev. Cancer 10, 639-646. https://doi.org/10.1038/nrc2917
  23. Shanta, S. R., Zhou, L. H., Park, Y. S., Kim, Y. H., Kim, Y. and Kim, K. P. (2011) Binary Matrix for MALDI Imaging Mass Spectrometry of Phospholipids in Both Ion Modes. Anal Chem. 83, 1252-1259. https://doi.org/10.1021/ac1029659
  24. Shimma, S., Sugiura, Y., Hayasaka, T., Hoshikawa, Y., Noda, T. and Setou, M. (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 855, 98-103. https://doi.org/10.1016/j.jchromb.2007.02.037
  25. Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. and Gould, E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature. 410, 372-376. https://doi.org/10.1038/35066584
  26. Sohn, H., Kim, Y. S., Kim, H. T., Kim, C. H., Cho, E. W., Kang, H. Y., Kim, N. S., Ryu, S. E., Lee, J. H. and Ko, J. H. (2006) Ganglioside GM3 is involved in neuronal cell death. FASEB J. 20, 1248-1250. https://doi.org/10.1096/fj.05-4911fje
  27. Sugiura, Y. and Setou, M. (2010) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J. Neuroimmune. Pharmacol. 5, 31-43. https://doi.org/10.1007/s11481-009-9162-6
  28. Takahashi, M., Okazaki, H., Ogata, Y., Takeuchi, K., Ikeda, U. and Shimada, K. (2002) Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis. 161, 387-394. https://doi.org/10.1016/S0021-9150(01)00674-8
  29. van Meer, G. (2005) Cellular lipidomics. EMBO J. 24, 3159-3165. https://doi.org/10.1038/sj.emboj.7600798
  30. Walch, A., Rauser, S., Deininger, S. O. and Hofl er, H. (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130, 421-434. https://doi.org/10.1007/s00418-008-0469-9
  31. Wang, H. Y., Jackson, S. N., McEuen, J. and Woods, A. S. (2005) Localization and analyses of small drug molecules in rat brain tissue sections. Anal. Chem. 77, 6682-6686. https://doi.org/10.1021/ac050868d
  32. Watanabe, M. and Okada, T. (2003) Lysophosphatidylcholine-induced myocardial damage is inhibited by pretreatment with poloxamer 188 in isolated rat heart. Mol. Cell Biochem. 248, 209-215. https://doi.org/10.1023/A:1024165125139
  33. Wiseman, J. M., Ifa, D. R., Zhu, Y., Kissinger, C. B., Manicke, N. E., Kissinger, P. T. and Cooks, R. G. (2008) Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues. Proc. Natl. Acad. Sci. USA. 105, 18120-18125. https://doi.org/10.1073/pnas.0801066105

Cited by

  1. Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry vol.47, pp.11, 2012, https://doi.org/10.1002/jms.3068
  2. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites vol.65, pp.8, 2013, https://doi.org/10.1016/j.addr.2013.04.009
  3. State-of-the-art MS technology applications in lung disease vol.3, pp.23, 2011, https://doi.org/10.4155/bio.11.271
  4. Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry vol.406, pp.1, 2014, https://doi.org/10.1007/s00216-013-7444-6
  5. Mass spectrometry imaging of surface lipids on intactDrosophila melanogasterflies vol.49, pp.3, 2014, https://doi.org/10.1002/jms.3331
  6. Spectroscopic methods to analyze drug metabolites vol.41, pp.4, 2018, https://doi.org/10.1007/s12272-018-1010-x