References
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2001.
- T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.
- A. Ben-Hur, D. Horn, H. T. Siegelmann, V. N. Vapnik, “Support Vector Clustering,” Journal of Machine Learning Research, vol. 2, pp. 125-137, 2001.
- S. R. Gunn, “Support Vector Machines for Classification and Regression,” Technical Report, University of Southampton, 1998.
- V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.
- V. N. Vapnik, “An Overview of Statistical Learning Theory,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988-999, 1999. https://doi.org/10.1109/72.788640
- Z.-J. Chen, B. Liu, X.-P. He, “A SVC Iterative Learning Algorithm Based on Sample Selection for Large Samples," Proceedings of International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3308-3313, 2007.
- M.-H. Ha, L.-F. Zheng, J.-Q. Chen, “The Key Theorem of Learning Theory Based on Random Sets Samples," Proceedings of International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2826-2831, 2007.
- Y. S. Jia, C. Y. Jia, H. W. Qi, “A New Nu-Support Vector Machine for Training Sets with Duplicate Samples,” Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, pp. 4370-4373, 2005.
- W. Ng, M. Dash, “An Evaluation of Progressive Sampling for Imbalanced Data Sets," Proceedings of Sixth IEEE International Conference on Data Mining, pp. 657-661, 2006.
- K.-H. Yang, G.-L. Shan L.-L. Zhao, “Correlation Coefficient Method for Support Vector Machine Input Samples," Proceedings of International Conference on Machine Learning and Cybernetics, pp. 2856-2861, 2006.
- C. S. Ding, Q. Wu, C. T. Hsieh, M. Pedram, “Stratified Random Sampling for Power Estimation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 6, pp. 465-471, 1998. https://doi.org/10.1109/43.703828
- M. Keramat, R. Kielbasa, “A study of stratified sampling in variance reduction techniques for parametric yield estimation,” Proceedings of IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1652-1655, 1997.
- P. A. D. I. Santos, Jr., R. J. Burke, J. M. Tien, “Prograssive Random Sampling With Stratification,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Applications and Reviews, vol. 37, no. 6, pp. 1223-1230, 2007.
- M. Xing, M. Jaeger, H. Baogang, “An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method,” Proceedings of International Conference on Computer Graphics, Imaging and Visualisation, pp. 384-389, 2006.
- The UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/
- S. K. Thompson, Sampling, 2nd ed., John Wiley & Sons, 2002.
- S. Jun, “Support Vector Machine based on Stratified Sampling,” International Journal of Fuzzy Logic and Intelligent System, vol. 9, no. 2, pp. 141-146, 2009. https://doi.org/10.5391/IJFIS.2009.9.2.141
- S. Jun, “Improvement of SOM using Stratifiation,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 1, pp. 36-41, 2009. https://doi.org/10.5391/IJFIS.2009.9.1.036
- S. Jun, “Web Usage Mining Using Evolutionary Support Vector Machine," Lecture Note in Artificial Intelligence, vol. 3809, pp. 1015-1020, Springer-Verlag, 2005.
- J. Wang, X. Wu, C. Zhang, “Support vector machines based on K-means clustering for real-time business intelligent systems,” International Journal Business Intelligence and Data Mining, vol. 1, no. 1, pp. 54-64, 2005. https://doi.org/10.1504/IJBIDM.2005.007318
- 김영원, 류제복, 박진우, 홍기학 역, 표본조사의 이해와 활용, 교우사, 2006.
- R. L. Scheaffer, W. Mendenhall III, R. L. Ott, Elementary Survey Sampling 6th edition, Duxbury, 2006.
- 손건태, 전산통계개론 - 통계적 모의실험과 추정 알고리즘 제4판, 자유아카데미, 2005.
- R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org, 2010.
- Y. Tille, A. Matei, Survey Sampling-Package 'sampling', R-Project CRAN, 2009.
- B. Repley, Feed-forward Neural Networks and Multinomial Log-Linear Models-Package 'nnet', R-Project CRAN, 2009.
Cited by
- Design of Client-Server Model For Effective Processing and Utilization of Bigdata vol.22, pp.4, 2016, https://doi.org/10.13088/jiis.2016.22.4.109