DOI QR코드

DOI QR Code

Geographic Genetic Contour of A Leaf Beetle, Chrysolina aurichalcea (Coleoptera: Chysomelidae), on the Basis of Mitochondrial COI Gene and Nuclear ITS2 Sequences

  • Park, Joong-Won (Institute of Emvironmentally-Friendly Agliculture, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Park, Sun-Young (Institute of Emvironmentally-Friendly Agliculture, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Wang, Ah-Rha (Institute of Emvironmentally-Friendly Agliculture, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Min-Jee (Institute of Emvironmentally-Friendly Agliculture, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Park, Hae-Chul (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Kim, Ik-Soo (Institute of Emvironmentally-Friendly Agliculture, College of Agriculture & Life Sciences, Chonnam National University)
  • 투고 : 2011.08.27
  • 심사 : 2011.09.10
  • 발행 : 2011.09.30

초록

The leaf beetle, $Chrysolina$ $aurichalcea$ (Coleoptera: Chysomelidae), is a pest damaging plants of Compositae. In order to understand the genetic diversity and geographic variation we sequenced a portion of mitochondrial COI gene (658 bp) and complete nuclear internal transcribed spacer 2 (ITS2) of the species collected from seven Korean localities. A total of 17 haplotypes (CACOI01~CACOI17), with the maximum sequence divergence of 3.04% (20 bp) were obtained from COI gene sequence, whereas 16 sequence types (ITS2CA01~ITS2CA16), with the maximum sequence divergence of 2.013% (9 bp) were obtained from ITS2, indicating substantially larger sequence divergence in COI gene sequence. Phylogenetically, the COI gene provided two haplotype groups with a high nodal support (${\geq}87%$), whereas ITS2 provided only one sequence type group with a high nodal support (${\geq}92%$). The result of COI gene sequence may suggest the presence of historical biogeographic barriers that bolstered genetic subdivision in the species. Different grouping pattern between COI gene and ITS2 sequences were interpreted in terms of recent dispersal, reflected in the ITS2 sequence. Finding of unique haplotypes and sequence types only from Beakryeng-Islet population was interpreted as an intact remnant of ancient polymorphism. As more samples are analyzed using further hyper-variable marker, further fruitful inference on the geographic contour of the species might be available.

키워드

참고문헌

  1. Arnheim N (1983) Concerted evolution of multigene families, in evolution of genes and proteins. Nei M, Koehn RK, (eds) pp.38-61. Sinauer, Sunderland, MA.
  2. Bae JS, Kim I, Kim SR, Jin BR, Sohn HD (2001) Mitochondrial DNA sequence variation of the mushroom pest flies, Lycoelia mali (Diptera: Sciaridae), and, Coboldia fuscipes (Diptera: Scatopsidae), in Korea. App Entomol Zool Jpn 36, 451-457. https://doi.org/10.1303/aez.2001.451
  3. Castresana J (2000) Selection of conserved blocks from multiple alignment for their use in phylogenetic analysis. Mol Biol Evol 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  4. Choo HY, Woo KS, Patrick JS, Park YD (1992) Phytophagous insect associated with compositae (Campanulales: Disotyledoneae). Korean J Appl Entomol 31, 509-515.
  5. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotype: application to human mitochondrial DNA restriction date. Genetics 131, 479-491.
  6. Excoffier L, Laval F, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics date analysis. Evol Bioinf Online 1, 47-50.
  7. Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution. 29, 783-791.
  8. Fitch WM (1971) Towards defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 20, 406-416. https://doi.org/10.2307/2412116
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primer for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3, 294-299.
  10. Fritz GN, Conn J, Cockburn A, Seawright J (1994) Sequence analysis of ribosomal DNA internal transcribed spacer 2 from populations of Anopheles nunezyovari (Diptera: Culicidae). Mol Biol Evol 11, 406-416.
  11. Fujiyama S (1989) Species problems in Chrysolina aurichalcea (Mannerheim) with special reference to chromosome numbers. Entomography 6, 443-452.
  12. Fujiyama S, Okamoto K (1996) Two new karyotypes in the Chrysolina aurichalcea (Mannerheim) complex (Coleoptera: Chrysomelidae), their relationship and distribution in the Japanese Archipelago. Appl Entomol Zool 31, 203-209. https://doi.org/10.1303/aez.31.203
  13. Gomez-Zurita J, Juan C, Petitpierre E (2000) Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae). Insect Mol Biol 9, 591- 604. https://doi.org/10.1046/j.1365-2583.2000.00223.x
  14. Hajibabaei M, Singer GA, Hebert PD, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23, 167-172. https://doi.org/10.1016/j.tig.2007.02.001
  15. Hebert PD, Cywinska A, Ball SL, de Ward JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond (B) 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
  16. Jeong HC, Kim JA, Im HH, Jeong HU, Hong MY, Lee JL, Han YS, Kim I (2009) Mitochondrial DNA sequence variation of the swallowtail butterfly, Papilio xuthus, and the cabbage butterfly, Pieris rapae. Biochem Genet 47, 165-178. https://doi.org/10.1007/s10528-008-9214-2
  17. Ji Y, Zhang D, He L (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3, 581-585. https://doi.org/10.1046/j.1471-8286.2003.00519.x
  18. Kang AR, Baek JY, Lee SH, Cho YS, Kim WS, Han YS, Kim I (2011) Geographic homogeneity and high gene flow of the pear psylla, Cacopsylla pyricola Foerster (Homoptera: Psyllidae), detected by mitochondrial COI gene and nuclear ribosomal internal transcribed spacer 2. Anim Cells Sys. DOI:10.1080/19768354.2011.607511. In Press.
  19. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059-3066. https://doi.org/10.1093/nar/gkf436
  20. Keller A, Schleicher T, Schultz J, Muller T, Dandekar T, Wolf M (2009) 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50-57. https://doi.org/10.1016/j.gene.2008.10.012
  21. Kim JH (2001) The Coleoptera of Korea. Kyo-Hak Publishing CO., Ltd.
  22. Kim I, Bae JS, Sohn HD, Kang PD, Ryu KS, Sohn BH, Jeong WB, Jin BR (2000) Genetic homogeneity in the domestic silkworm, Bombyx mori, and phylogenetic relationship between B. mori and wild silkworm, B. mandarina, using mitochondrial COI gene sequences. Int J Indust Entomol 1, 9-17.
  23. Kim JG, Kim I, Bae JS, Jin BR, Kim KY, Kim SE, Choi YC, Cho JY, Lee KY, Sohn HD, Noh SK (2001) Genetic subdivision of the firefly, Luciola lateralis (Coleoptera: Lampyridae), in Korea detected by mitochondrial COI gene sequences. Korean J Genetics 23, 203-219.
  24. Kim I, Cha SY, Kim MA, Lee YS, Lee KS, Choi YS, Hwang JS, Jin BR, Han YS (2007a) Polymorphism and genomic structure of the A+T-rich region of mitochondrial DNA in the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Biochem Genet 45, 589-610. https://doi.org/10.1007/s10528-007-9099-5
  25. Kim KY, Jang SK, Park DW, Hong MY, Oh KH, Kim KY, Hwang JS, Han YS, Kim I (2007b) Mitochondrial DNA sequence variation of the tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae). Int J Indust Entomol 15, 47- 58.
  26. Kim HY, Lee KY, Lee SB, Kim SR, Hong MY, Kim DY, Kim I (2008) Mitochondrial DNA sequence variation of the mason bee, Osmia cornifrons (Hymenoptera: Apidae). Int J Indust Entommol 16, 75-86.
  27. Kim MJ, Yoon HJ, Im HH, Jeong HU, Kim MI, Kim SR, Kim I (2009) Mitochondrial DNA sequence variation of the bumblebee, Bombus ardens (Hymenoptera: Apidae). J Asia Pacific Entomol 12, 133-139. https://doi.org/10.1016/j.aspen.2009.02.003
  28. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581
  29. Kimoto S, Takizawa H (1994) Leaf beetles (Chrysomelidae) of Japan. Tokyo (Japan), Takai Unversity Press.
  30. Kitamura N, Fujiyama S, Aotsuka T (2008) Rapid chromsomal changes inferred variation in mitochondrial DNA among populations of the leaf beetle Chrysolina aurichalcea (Coleoptera: Chrysomelidae) in Japan. Zoolog Sci 25, 1111- 1120. https://doi.org/10.2108/zsj.25.1111
  31. Kitamura N, Fujiyama N, Katakura H, Aotsuka T (2010) Reproductive isolation between 2 karyotypes in natural populations of the leaf beetle Chrysolina aurichalcea. J Hered 101, 317-324. https://doi.org/10.1093/jhered/esp115
  32. Lee SC, Bae JS, Kim I, Yang WJ, Kim JK, Kim KY, Sohn HD, Jin BR (2003) Mitochondrial DNA sequence-based population genetic structure of the firefly, Pyrocoelia rufa (Coleoptera: Lampyridae). Biochem Genet 41, 427-452. https://doi.org/10.1023/B:BIGI.0000007777.87407.1b
  33. Li J, Choi YS, Kim I, Sohn HD, Jin BR (2006) Genetic variation of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in China inferred from mitochondrial COI gene sequences. Euro J Entomol 103, 605-611. https://doi.org/10.14411/eje.2006.081
  34. Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18, 136-142. https://doi.org/10.1006/mpev.2000.0864
  35. Miller BR, Crabtree MB, Savage HM (1996) Phylogeny of fourteen culex mosquito species including the Culex pipines complex, inferred from the internal transcribed spacer of ribosomal DNA. Insect Mol Biol 5, 93-107. https://doi.org/10.1111/j.1365-2583.1996.tb00044.x
  36. Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ (1999) Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the african malaria vector Anopheles funestus. Mol Ecol 8, 289-297. https://doi.org/10.1046/j.1365-294X.1999.00567.x
  37. Navajas M, Lagnel M, Gutierrez J, Boursot P (1998) Specieswide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80, 742-752. https://doi.org/10.1046/j.1365-2540.1998.00349.x
  38. Oh HK, Yoon HJ, Kim MJ, Jeong HU, Kim SR, Hwang JS, Bae CH, Kim I (2009) ITS2 ribosomal DNA sequence variation of the Bumblebee, Bombus ardens (Hymenoptera: Apidae). Genes Genom 31, 293-303. https://doi.org/10.1007/BF03191202
  39. Roderick, GK (1996) Geographic structure insect populations: Gene flow, phylogeography, and their uses. Annu Rev Entomol 41, 25-352.
  40. Stewart JB, Beckenbach AT (2003) Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Mol Phylogenet Evol 26, 513-26. https://doi.org/10.1016/S1055-7903(02)00421-9
  41. Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other method) ver. 4. 10, Sunderland (MA): Sinauer Associates.
  42. Tang J, Toe L, Back C, Unnasch TR. (1996) Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol Biol Evol 13, 244-52. https://doi.org/10.1093/oxfordjournals.molbev.a025561
  43. Wang AR, Kim MJ, Cho YB, Wan X, and Kim I (2011) Geographic genetic contour of a ground beetle, Scarites aterrimus (Coleoptera: Carabidae) on the basis of bitochondrial DNA Sequence. Int J Indust Entomol 22, 65-74. https://doi.org/10.7852/ijie.2011.22.2.65
  44. Worheide GJ, Hooper N, Degnan MB (2002) Phylogeography of western pacific Leucetta 'chagosensis' (Porifera, Calcarea) from ribosomal DNA sequences: implications for populations history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11, 1753- 1768. https://doi.org/10.1046/j.1365-294X.2002.01570.x

피인용 문헌

  1. Genetic diversity of the dung beetle,Copris tripartitus(Coleoptera: Scarabaeidae), that is endangered in Korea vol.42, pp.5, 2012, https://doi.org/10.1111/j.1748-5967.2012.00470.x