References
- Amar Bouzid, Dj., Tiliouine, B. and Vermeer, P.A. (2004), "Exact formulation of interface stiffness matrix for axisymmetric bodies under non-axisymmetric loading'', Comput. Geotech., 31(2), 75-87. https://doi.org/10.1016/j.compgeo.2004.01.007
- Amar Bouzid, Dj. and Vermeer, P.A. (2007), ''Effect of interface characteristics on the influence coefficients of an embedded circular footing under horizontal and moment loading'', Geotech. Geo. Eng., 25, 487-497. https://doi.org/10.1007/s10706-007-9123-x
- Amar Bouzid, Dj. and Vermeer, P.A. (2009), ''Fourier series based FE analysis of a disc under prescribed displacements-elastic stress study'', Arch. Appl. Mech., 79(10), 927-937. https://doi.org/10.1007/s00419-008-0264-z
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2001), Concepts and applications of finite element analysis, 4th edn., London, Wiley.
- Durocher, L.A., Gasper, A. and Rhoades, G. (1978), ''A numerical comparison of axisymmetric finite elements'', Int. J. Numer. Meth. Eng., 12, 1415-1427. https://doi.org/10.1002/nme.1620120910
- Kitiyodom, P. and Matsumoto, T. (2002), ''A simplified analysis method for piled raft and pile group foundations with batter piles'', Int. J. Numer. Anal. Meth. Geomech., 26, 1349-1369. https://doi.org/10.1002/nag.248
- Kitiyodom, P. and Matsumoto, T. (2003), ''A simplified analysis method for piled raft foundations in nonhomogeneous soils'', Int. J. Numer. Anal. Meth. Geomech., 27, 85-109. https://doi.org/10.1002/nag.264
- Lade, P.V. (1977), "Elasto-plastic stress-strain theory for cohesion-less soil with curved yield surface'', Int. J. Solids Struct., 13, 1019-1035. https://doi.org/10.1016/0020-7683(77)90073-7
- Liang, F.Y., Chen, L.Z. and Shi, X.G. (2003), ''Numerical analysis of composite piled raft with cushion subjected to vertical load'', Comput. Geotech., 30, 443-453. https://doi.org/10.1016/S0266-352X(03)00057-0
- Mokwa, R.L. and Duncan, J.M. (2001), ''Evaluation of lateral-load resistance of pile caps'', J. Geotech. Geoenviron. Eng., 127(2), 185-192. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(185)
- Poulos, H.G. and Davis, E.H. (1980), Pile foundation analysis and design, Wiley, New York,
- Rollins, K.M. and Sparks, A. (2002), ''Lateral resistance of full-scale pile cap with gravel backfill'', J. Geotech. Geoenviron. Eng., 128(9), 711-723. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(711)
- Smith, I.M. and Griffiths, D.V. (1988), Programming the finite element method, 2nd ed. John Wiley and Sons, Chichester.
- Taiebat, H.A. and Carter, J.P. (2001), ''A semi-analytical finite element method for three-dimensional consolidation analysis'', Comput. Geotech., 28, 55-78. https://doi.org/10.1016/S0266-352X(00)00019-7
- Wilson, E.L. (1965), "Structural analysis of axisymmetric solids'', J. Am. Inst. Aeronaut. Astronaut., 3(12), 2269- 2274. https://doi.org/10.2514/3.3356
- Winnicki, L.A. and Zienkiewicz, O.C. (1979), "Plastic (or visco-plastic) behavior of axisymmetric bodies subjected to non-axisymmetric loading-semi-analytical-finite element solution'', Int. J. Numer. Meth. Eng., 14, 1399-1412. https://doi.org/10.1002/nme.1620140911
- Zienkiewicz, O.C. and Taylor, R.L. (2001), The finite element method, 4th edn., London McGraw-Hill.
Cited by
- Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept vol.5, pp.5, 2013, https://doi.org/10.12989/gae.2013.5.5.379
- A numerical procedure to correlate the subgrade reaction coefficient with soil stiffness properties for laterally loaded piles using the FSAFEM 2019, https://doi.org/10.1080/19386362.2017.1365475
- Dynamic analyses and field observations on piles in Kolkata city vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.415
- Experimental and numerical study on performance of long-short combined retaining piles vol.20, pp.3, 2011, https://doi.org/10.12989/gae.2020.20.3.255
- Analytical Quantification of Ultimate Resistance for Sand Flowing Horizontally around Monopile: New p-y Curve Formulation vol.21, pp.3, 2011, https://doi.org/10.1061/(asce)gm.1943-5622.0001927