DOI QR코드

DOI QR Code

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao (School of Transportation Science and Engineering, Beihang University) ;
  • Shi, Zhifei (School of Civil Engineering, Beijing Jiaotong University)
  • Received : 2010.12.30
  • Accepted : 2011.08.06
  • Published : 2011.10.25

Abstract

Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

Keywords

References

  1. Aldraihem, O.J. and Khdeir, A.A. (2006), "Analytical solutions of antisymmetric angle-ply laminated plates with thickness-shear piezoelectric actuators", Smart Mater. Struct., 15(2), 232-242. https://doi.org/10.1088/0964-1726/15/2/002
  2. Almajid, A., Taya, M. and Hudnut, S. (2001), "Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure", Int. J. Solids Struct., 38(19), 3377-3391. https://doi.org/10.1016/S0020-7683(00)00264-X
  3. Bboudi, J. (1991), Mechanics of Composite Materials: a United Micromechanical Approach, Amsterdam: Elsevier.
  4. Chen, T.Y., Chung, C.T. and Lin, W.L. (2000), "A revisit of a cylindrically anisotropic tube subjected to pressuring, shearing, torsion, extension, and a uniform change", Int. J. Solids Struct., 37(37), 5143-5159. https://doi.org/10.1016/S0020-7683(99)00202-4
  5. Chen, Y. and Shi, Z.F. (2005), "Exact solutions of functionally gradient piezothermoelastic cantilevers and parameter identification", J. Intell. Mater. Syst. Struct., 16(6), 531-539. https://doi.org/10.1177/1045389X05053208
  6. Ding, H.J., Wang, H.M. and Chen, W.Q. (2003), "Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere", Arch. Appl. Mech., 73(1-2), 49-62. https://doi.org/10.1007/s00419-002-0244-7
  7. Hagood, N.W. and Von, F.A. (1991), "Damping of structural vibrations with piezoelectric materials and passive electrical networks", J. Sound Vib., 146(2), 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  8. Han, R. and Shi, Z.F. (2008), "Exact analysis of two kinds of piezoelectric actuators", Smart Mater. Struct., 17, 015018. https://doi.org/10.1088/0964-1726/17/01/015018
  9. Hauke, T., Kouvatova, A., Steinhausena, R., Seiferta, W., Beigea, H., Theoa,H., Langhammera and Abichtb, H.P. (2000), "Bending behavior of functionally gradient materials", Ferroelectrics, 238(1), 195-202. https://doi.org/10.1080/00150190008008784
  10. Hou, P.F., Wang, H.M. and Ding, H.J. (2003), "Analytical solution for the axisymmetric plane strain electroelastic dynamics of a special non-homogeneous piezoelectric hollow cylinder", Int. J. Eng. Sci., 41(16), 1849-1868. https://doi.org/10.1016/S0020-7225(03)00115-0
  11. Lee, S., Cho, B.C., Park, H.C., Yoon, K.J. and Goo, N.S. (2002), "Analysis of multi-layered actuators using an assumed strain solid element", Mater. Chem. Phys., 75(1-3), 174-177. https://doi.org/10.1016/S0254-0584(02)00050-0
  12. Liu, Y.T. and Jiang, C.C. (2007), "Pneumatic actuating device with nanopositioning ability utilizing PZT impact force coupled with differential pressure", Precis. Eng., 37(3), 293-303.
  13. Liu, Y.T. and Higuchi, T. (2001), "Precision positioning device utilizing impact force of combined piezopneumatic actuator", IEEE-ASME T. Mech., 6(4), 467-473. https://doi.org/10.1109/3516.974860
  14. Loewy, R.G. (1997), "Recent developments in smart structures with aeronautical applications", Smart Mater. Struct., 6(5), R11-R42. https://doi.org/10.1088/0964-1726/6/5/001
  15. Mitchell, J.A. and Reddy, J.N. (1995), "A study of embedded piezoelectric layers in composite cylinders", J. Appl. Mech.-T. ASME., 62(1) 166-173.
  16. Muralt, P., Dohl, D.W. and Denk, W. (1986), "Wide-range, low-operating-voltage, bimorph stm: Application as potentiometer", IBM J. Res. Dev., 30(5), 443-450. https://doi.org/10.1147/rd.305.0443
  17. Olesiak, Z.S. and Pyryev, Y.A. (1995), "A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder", Int. J. Eng. Sci., 33(6), 773-780. https://doi.org/10.1016/0020-7225(94)00099-6
  18. Rao, S.S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey", Appl. Mech. Rev. 47(4), 113-123. https://doi.org/10.1115/1.3111074
  19. Sedighi, M.R. and Shakeri, M. (2009), "A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels", Smart Mater. Struct., 18.
  20. Sharma, J.N., Pal, M. and Chand, D. (2004), "Three-dimensional vibration analysis of a piezothermoelastic cylindrical panel", Int. J. Eng. Sci., 42(15-16), 1655-1673. https://doi.org/10.1016/j.ijengsci.2004.01.006
  21. Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14(4), 835-842. https://doi.org/10.1088/0964-1726/14/4/043
  22. Shi, Z.F., Xiang, H.J. and Spencer, B.F. (2006), "Exact analysis of multi-layer piezoelectric/composite cantilevers", Smart Mater. Struct., 15(5) 1447-1458. https://doi.org/10.1088/0964-1726/15/5/034
  23. Ting, T.C.T. (1999), "New solutions to pressuring, shearing, torsion and extension of a circular tube or bar", Proc. R. Soc. Lond. A., 455(1989), 3527-3542. https://doi.org/10.1098/rspa.1999.0464
  24. Wang, Z.G., Abel, E.W., Millsb, R.P. and Liucm Y. (2002), "Assessment of multi-layer piezoelectric actuator technology for middleear implants", Mechatronics, 12(1), 3-17. https://doi.org/10.1016/S0957-4158(00)00067-2
  25. Xiang, H.J., Shi, Z.F. and Zhang, T.T. (2006), "Elastic analyses of heterogeneous hollow cylinders", Mech. Res. Commun., 33(5), 681-691. https://doi.org/10.1016/j.mechrescom.2006.01.005
  26. Yoon, H.S. and Washington, G. (1998), "Piezoceramic actuated aperture antennae", Smart Mater. Struct., 7(4), 537- 542. https://doi.org/10.1088/0964-1726/7/4/014
  27. Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J. Micromech. Microeng., 16(3) 640-647. https://doi.org/10.1088/0960-1317/16/3/020
  28. Zhang, T.T. and Shi, Z.F. (2007), "Bending behavior of 2-2 multi-layered piezoelectric curved actuators", Smart Mater. Struct., 16(3), 634-641. https://doi.org/10.1088/0964-1726/16/3/010
  29. Zhou, S.W., Liang, C. and Rogers, C.A. (1994), "Modeling of distributed piezoelectric actuators integrated with thin cylindrical-shells", J. Acoust. Soc. Am., 96(3), 1605-1612. https://doi.org/10.1121/1.410239

Cited by

  1. Impact Mechanical Response of a 2-2 Cement-Based Piezoelectric Sensor Considering the Electrode Layer Effect vol.17, pp.9, 2017, https://doi.org/10.3390/s17092035
  2. Theoretical analyses for a 2-2 cement-based piezoelectric curved composite with electrode layers vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.961
  3. Exact impact response of multi-layered cement-based piezoelectric composite considering electrode effect pp.1530-8138, 2018, https://doi.org/10.1177/1045389X18812713
  4. Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers vol.11, pp.2, 2013, https://doi.org/10.12989/sss.2013.11.2.185