DOI QR코드

DOI QR Code

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek (Department of Physics, Himachal Pradesh University) ;
  • Sharma, Manu (Mechanical Engineering Branch, UIET, Panjab University) ;
  • Thakur, Nagesh (Department of Physics, Himachal Pradesh University)
  • Received : 2009.10.23
  • Accepted : 2011.06.21
  • Published : 2011.09.25

Abstract

This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.

Keywords

References

  1. Abramovich, H. and Pletner, B. (1997), "Actuation and sensing of piezolaminated sandwich type structures", Compos. Struct., 38(1-4), 17-27. https://doi.org/10.1016/S0263-8223(97)00037-8
  2. Akella, P., Chen, X., Cheng, W., Hughes, D. and Wen, J.T. (1994), "Modeling and control of smart structures with bonded piezoelectric sensors and actuators", Smart Mater. Struct., 3, 344-353. https://doi.org/10.1088/0964-1726/3/3/010
  3. Alberada, A., Gonnard, P., Perrin, V., Briot, R. and Guyomar, D. (2000), "Characterization of the mechanical non-linear behavior of piezoelectric ceramics", IEEE T. Ultrason. Ferr., 47(4), 844-53. https://doi.org/10.1109/58.852066
  4. Alkhatib, R. and Golnaraghi, M.F. (2003), "Active structural vibration control: A review", Shock Vib., 35(5), 367-383. https://doi.org/10.1177/05831024030355002
  5. Allik, H. and Hughes, J.R. (1970), "Finite element method for piezoelectric vibration", Int. J. Numer. Meth. Eng., 2(2), 151-157. https://doi.org/10.1002/nme.1620020202
  6. Alzahrani, B.A. and Alghamdi, A.A.A. (2003), "Review of the mechanics of materials models for onedimensional surface-bonded piezoelectric actuators", Smart Mater. Struct., 12(3).
  7. Amant, Y.S. and Cheng, L. (2000), "Simulations and experiments on active vibration control of a plate with integrated piezoceramics", Thin Wall. Struct., 38(2), 105-123. https://doi.org/10.1016/S0263-8231(00)00034-3
  8. Anderson, E.H., Hagood, N. and Goodlife, J (1992), "Self-sensing piezoelectric actuation : analysis and application to controlled structures", Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 33rd, Dallas, TX, UNITED STATES, April.
  9. Aoki, Y., Gardonio, P and Elliott, S.J. (2008), "Modeling of a piezoceramic patch actuator for velocity feedback control", Smart Mater. Struct., 17(1).
  10. Apte, D.A. and Gauguli, R. (2009), "Influence of temperature and high electric field on power consumption by piezoelectric actuated integrated structure", CMC (Tech Science Press), 329(1), 1-23.
  11. Bailey, T. and Hubbard, J.E. Jr. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilevered beam", J. Guid. Control Dynam., 8, 605-11. https://doi.org/10.2514/3.20029
  12. Balamurugan, V. and Narayanan, S. (2001), "Active vibration control of smart shells using distributed piezoelectric sensors and actuators", Smart Mater. Struct., 10, 173-180. https://doi.org/10.1088/0964-1726/10/2/301
  13. Bao, Y., Tzou, H.S. and Venkayya, V.B. (1998), "Analysis of non-linear piezothermoelastic laminated beam with electric and temperature effects", J. Sound Vib., 209(3), 505-18. https://doi.org/10.1006/jsvi.1997.1265
  14. Barlas, T.K. and van Kuik, G.A.M. (2010), "Review of state of the art in smart rotor control research for wind turbines", Prog. Aeros. Sci., 46(1), 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002
  15. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22(3), 697-722. https://doi.org/10.1002/nme.1620220312
  16. Bathe, K.J. (1996), Finite element procedures in engineering analysis, Prentice-Hall, Englewood Cliffs, NJ.
  17. Baz, A. and Poh, S. (1988), "Performance of an active control system with piezoelectric actuators", J. Sound Vib., 126(2), 327-343. https://doi.org/10.1016/0022-460X(88)90245-3
  18. Baz, A. (2000), "Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping", Smart Mater. Struct., 9(3), 372-377. https://doi.org/10.1088/0964-1726/9/3/319
  19. Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76, 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
  20. Benjeddou, A., Trindade, M.A. and Ohayon, R. (2000), "Piezoelectric actuation mechanisms for intelligent sandwich structures", Smart Mater. Struct., 9(3), 328-335. https://doi.org/10.1088/0964-1726/9/3/313
  21. Benjeddou, A. (2009), "New insights in piezoelectric free-vibrations using simplified modeling and analyses", Smart Struct. Syst., 5(6), 591-612. https://doi.org/10.12989/sss.2009.5.6.591
  22. Birman, V. (1996), "Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors", Smart Mater. Struct., 5(4), 379-385. https://doi.org/10.1088/0964-1726/5/4/001
  23. Blanguernon, A. et al. (1999), "Active control of a beam using a piezoceramic element", Smart Mater. Struct., 8(1), 116-124. https://doi.org/10.1088/0964-1726/8/1/013
  24. Brennan, M.J. and Ferguson, N.S. (2004), Vibration control: Advanced application in acoustics, noise and vibration, Spon, London.
  25. Bronowicki, A.J., McIntyre, L.J., Betros, R.S. and Dvorsky, G.R. (1996), "Mechanical validation of smart structures", Smart Mater. Struct., 5(2), 129-139. https://doi.org/10.1088/0964-1726/5/2/003
  26. Bruant, I., Coffignal, G., Lene, F and Verge, M. (2001), "Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation", Smart Mater. Struct., 10(2), 404-408. https://doi.org/10.1088/0964-1726/10/2/402
  27. Cady, W.G. (1964), Piezoelectricity (Vol. I), Dover ,New York.
  28. Chandrashekhara, K. and Agarwal, A.N. (1993), "Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach", J. Intell. Mater. Syst. Struct., 4(4), 496-508. https://doi.org/10.1177/1045389X9300400409
  29. Chandrashekhara, K. and Tanneti, R. (1995), "Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators", Smart Mater. Struct., 4(4), 281-290. https://doi.org/10.1088/0964-1726/4/4/008
  30. Chen, W. and Cheung, Y.K. (1992), "Three dimensional 8-node and 20-node refined hybrid isoparametric elements", Int. J. Numer. Meth. Eng., 35(9), 11871-11889.
  31. Chen, S.H., Wang, Z.D. and Liu, X.H. (1997), "Active vibration control and suppression for intelligent structures", J. Sound Vib., 200(2), 167-177. https://doi.org/10.1006/jsvi.1996.0694
  32. Chen, C.Q. and Shen, Y.P. (1997), "Optimal control of active structures with piezoelectric modal sensors and actuators", Smart Mater. Struct., 6(4), 403-409. https://doi.org/10.1088/0964-1726/6/4/003
  33. Choi, S.B., Cheong C.C and Shin H.C. (1995), "Sliding mode control of vibration in a single-link flexible arm with parameter variations", J. Sound Vib., 179, 737-748. https://doi.org/10.1006/jsvi.1995.0049
  34. Crawley, E. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25, 1373-1385. https://doi.org/10.2514/3.9792
  35. Dhuri, K.D. and Sheshu, P. (2007), "Favorable locations for piezo actuator in plates with good control effectiveness and minimal change in system dynamics", Smart Mater. Struct., 16(6), 2526-2542. https://doi.org/10.1088/0964-1726/16/6/057
  36. Dimitriadis, E.K., Fuller, C.R. and Rogers, C.A. (1991), "Piezoeletric actuators for distributed vibration excitation of thin plates", J. Vib. Acoust., 113(1), 100-107. https://doi.org/10.1115/1.2930143
  37. Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intell. Mater. Syst. Struct., 3(1), 166-84. https://doi.org/10.1177/1045389X9200300109
  38. Elsoufi, L., Khalil, K., Lacha, R. and Charon, W. (2007), "Modeling the thermal behavior of PZT patches during the manufacturing process of smart thermoplastic structures", Smart Mater. Struct., 16(4), 1076-1082. https://doi.org/10.1088/0964-1726/16/4/016
  39. Fabunni, J.A. (1980), "Forced vibration of single stage axial compressor rotor", J. Eng. Power, 102, 322-328. https://doi.org/10.1115/1.3230255
  40. Fahy, F.J. and Walker, J.G. (1998), Fundamentals of noise and vibration control, Spon, London.
  41. Fleming, A.J. and Moheimani, S.O.R. (2004), "Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits", J. Intell. Mater. Syst. Struct., 15(2), 77-92. https://doi.org/10.1177/1045389X04039701
  42. Fripp, M.L. and Atalla, M.J. (2001), "Review of modal sensing and actuation techniques", Shock Vib., 33(1), 3-14. https://doi.org/10.1177/058310240103300101
  43. Friswell, M. I., Inman, D.J. and Rietz, R.W. (1997), "Active damping of thermally induced vibrations", J. Intell. Mater. Syst. Struct., 8, 678-685. https://doi.org/10.1177/1045389X9700800805
  44. Friswell, M.I. and Inman, D.J. (1999), " The relationship between positive position feedback and output feedback controllers", Smart Mater. Struct., 8(3), 285-291. https://doi.org/10.1088/0964-1726/8/3/301
  45. Fuller, C.R., Elliott, S. and Nelson, P.A. (1997), The active control of vibration, Academic, New York.
  46. Garcia, J.E. et al. (2001), "High electric field measurement of dielectric constant and losses of ferroelectric ceramics", J. Phys. D. Appl. Phys., 34(22), 3279-3284. https://doi.org/10.1088/0022-3727/34/22/312
  47. Ge, P. and Jouaneh, M. (1996), "Tracking control of a piezoceramic actuator", IEEE T. Contr. Syst. T., 4(3), 209-216. https://doi.org/10.1109/87.491195
  48. Geradin, M. and Rixen, D. (1993), Theories des vibrations-Application a la Dynamique des Structures, Mason, Paris.
  49. Ghandi, K. and Hagood, N.W. (1997), "A hybrid finite element model for phase transitions in non-linear electromechanically coupled material", Proceedings of the SPIE Smart Structures and Materials-1997: Mathematics and control in smart structures.
  50. Giannopoulos, G. and Vantomme, J. (2006), "A thermal-electrical-mechanical coupled FE formulation using discrete layer kinematics for the dynamic analysis of smart plates", Smart Mater. Struct., 15(6), 1846-1857. https://doi.org/10.1088/0964-1726/15/6/039
  51. Glynne-Jones, P., Beeby, S.P. and White, N.M. (2001), "A method to determine the ageing rate of thick-film PZT layers", Smart Mater. Struct., 12(6), 663-670.
  52. Gopal, M. (2008), Digital control and state variable methods, 3rd Ed., Tata McGraw Hill: New Delhi.
  53. Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mech., 154(1-4), 129-140. https://doi.org/10.1007/BF01170703
  54. Griffiths, D.J. (1999), Introduction to electrodynamics, 3rd Ed., Prentice Hall.
  55. Gupta, Vivek et al. (2010), "Optimization criteria for optimal placement of piezoelectric sensors & actuators on a smart structure: A technical review", J. Intell. Mater. Syst. Struct., 21(12), 1227-1243. https://doi.org/10.1177/1045389X10381659
  56. Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA J., 3(2), 380. https://doi.org/10.2514/3.2874
  57. Ha, S.K., Keilers, C. and Chang, F.K. (1992), "Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators", AIAA J., 30(3), 772-780. https://doi.org/10.2514/3.10984
  58. Han, J.H., Rew, K.H. and Lee, I. (1997), "An experimental study of active vibration control of composite structures with a piezoceramic actuator and a piezo-film sensor", Smart Mater. Struct., 6(5), 549-558. https://doi.org/10.1088/0964-1726/6/5/006
  59. Han, J.H. and Lee, In (1998), "Analysis of composite plates with piezoelectric actuators for vibration control using layerwise displacement theory", Compos. Part B - Eng, 29(B), 621-632. https://doi.org/10.1016/S1359-8368(98)00027-4
  60. Han, J.H., Cho, K.D., Youn, S.H. and Lee, In "Vibration and actuation characteristics of composite structures with a bonded piezoceramic actuator", Smart Mater. Struct., 8(1), 136-143. https://doi.org/10.1088/0964-1726/8/1/015
  61. Hanagud, S., Obal, M.W. and Meyyappa, M. (1985), "Electronic damping techniques and active vibration control", AIAA paper, 85-0752, 443-453.
  62. Huang, D. and Sun, B. (2001), "Approximate analytical solutions of smart composite Mindlin beams", J. Sound Vib., 244(3), 379-394. https://doi.org/10.1006/jsvi.2000.3475
  63. Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Piezoelasticity solutions for functionally graded piezoelectric beams", Smart Mater. Struct., 16(3), 687-695. https://doi.org/10.1088/0964-1726/16/3/015
  64. Hwang, W.S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
  65. Jaffe, B., Cook, W.R. and Jaffe, H.L. (1971), Piezoelectric Ceramics, Academic, London.
  66. Jiang, J. P. and Li, Dong Xu (2007), "A new finite element model for piezothermoelastic composite beam", J. Sound Vib., 306(3-5), 849-864. https://doi.org/10.1016/j.jsv.2007.06.023
  67. Jiang, J.P. and Li, Dong Xu (2008), "Finite element formulations for thermopiezoelastic laminated composite plates", Smart Mater. Struct., 17(1).
  68. Joshi, S. et el (2003), "Numerical characterization of functionally graded active materials under electrical and thermal fields", Smart Mater. Struct., 12(4), 571-579. https://doi.org/10.1088/0964-1726/12/4/309
  69. Kandagal, S.B. and Venkatraman, K. (2006), "Piezo-actua ted vibration and flutter control", Defence Sci. J., 56(4), 615-626. https://doi.org/10.14429/dsj.56.1927
  70. Kar, I.N, Seto, K. and Doi, F. (2002), "Multimode vibration control of a flexible structure using H based control", IEEE Transactions on Mechatronics, 5(1), 23-30.
  71. Karagulle, H , Malgaca, L.and Oktem, H.F. (2004), "Analysis of active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13(4), 661-667. https://doi.org/10.1088/0964-1726/13/4/003
  72. Kargarnovin, M.H., Najafizadeh, M.M and Viliani. N.S. (2007), "Vibration control of a functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge", Smart Mater. Struct., 16, 1252-1259. https://doi.org/10.1088/0964-1726/16/4/037
  73. Kim, Y.S. and Wang, K.W. (1993), "On the sliding mode control of structural vibrations via variable damping", Mech. Syst. Signal Pr., 7(4), 335-347. https://doi.org/10.1006/mssp.1993.1019
  74. Kim, J., Varadan, V.V., Varadan, V.K. and Bao, X.Q. et al. (1996), "Finite element modeling of smart cantilevered plate and comparison with experiments", Smart Mater. Struct., 5(2), 165-170. https://doi.org/10.1088/0964-1726/5/2/005
  75. Kim et al. (1997), "Finite element modeling of structures with piezoelectric active devices", Int. J. Numer. Meth. Eng., 40, 817-832. https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<817::AID-NME90>3.0.CO;2-B
  76. Kumar, R. and Singh, S.P. (2006), "Adaptive hybrid control of smart structures subjected to multiple disturbances", Smart Mater. Struct., 15(5), 1345-1357. https://doi.org/10.1088/0964-1726/15/5/024
  77. Kumar, R. and Khan, M. (2007), "Pole placement techniques for active vibration control of smart structures: A feasibility study", J. Vib. Acoust., 129(5), 601-615. https://doi.org/10.1115/1.2748474
  78. Kumar, R., Mishra, B.K. and Jain, S.C. (2008), "Thermally induced vibration control of cylindrical shell using piezoelectric sensor and actuator", Int. J. Adv. Manuf Tech., 38(5-6), 551-562. https://doi.org/10.1007/s00170-007-1076-y
  79. Lahtinen, R., Muukkonen, T., Koskinen, J, Hannula, S.P. and Heczko, O. (2007), "A piezopaint-based sensor for monitoring structure dynamics", Smart Mater. Struct., 16, 2571-2576. https://doi.org/10.1088/0964-1726/16/6/061
  80. Lee, C.K. and Moon F.C. (1990), "Modal sensors/actuators", J. Appl. Mech -T ASME., 57(2), 434-41. https://doi.org/10.1115/1.2892008
  81. Lee, C.K., Chiang, W.W. and O'Sullivan, T.C. (1991), "Piezoelectric modal sensor/actuator pairs for critical active damping vibration control", J. Acoust. Soc. Am., 90(1), 374-384. https://doi.org/10.1121/1.401260
  82. Lee, Y.Y. and Yao, J. (2003), "Structural vibration suppression using the piezoelectric sensors and actuators", J. Vib. Acoust., 125(1), 109-113. https://doi.org/10.1115/1.1523891
  83. Li, Y.Y., Cheng, L. and Li, P. (2003), "Modeling and vibration control of a plate coupled with piezoelectric material", Compos. Struct., 62(2), 155-162. https://doi.org/10.1016/S0263-8223(03)00110-7
  84. Li, F.X., Rajapakse, R.K.N.D., Mumford, D. and Gadala, M. (2008), "Quasi-static thermo-electro-mechanical behavior of piezoelectric stack actuators", Smart Mater. Struct., 17(1), 015049(10pp). https://doi.org/10.1088/0964-1726/17/1/015049
  85. Lim, Y.H., Gopinathan, S.V., Varadan, V.V. and Varadan V.K. (1999), "Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control", Smart Mater. Struct, 8(3), 324-337. https://doi.org/10.1088/0964-1726/8/3/305
  86. Lin, C.C. and Huang, H.N. (1999), "Vibration control of beam-plates with bonded piezoelectric sensors and actuators", Comput. Struct., 73(1-5), 239-248. https://doi.org/10.1016/S0045-7949(98)00280-6
  87. Loewy, R.G. (1997), "Recent developments in smart structures with aeronautical applications", Smart Mater. Struct., 6(5).
  88. Luck, R., Langley-Turnbaugh S.J., Bockheim J.G. and Agba E.I. (1998), "On the design of piezoelectric sensors and actuators", ISA Transactions, 37(1), 65-72. https://doi.org/10.1016/S0019-0578(98)00007-X
  89. MacNeal, R.H. (1987), "A theorem regarding locking of tapered four-node membrane elements", Int. J. Numer. Meth. Eng., 24(9), 1793-1799. https://doi.org/10.1002/nme.1620240913
  90. Malgaca, L. and Karagulle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
  91. Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite element", Smart Struct. Syst., 5(1), 23-42. https://doi.org/10.12989/sss.2009.5.1.023
  92. Manning, W.J., Plummer, A.M. and Levesley, M.C. (2000), "Vibration control of a flexible beam with integrated actuators and sensors", Smart Mater. Struct., 9(6), 932-939. https://doi.org/10.1088/0964-1726/9/6/325
  93. Marinkovic, D., Koppe, H. and Gabbert, U. (2007), "Accurate modeling of the electric field within piezoelectric layers for active composite structures", J. Intell. Mater. Syst. Struct., 18(5), 503-513. https://doi.org/10.1177/1045389X06067139
  94. Masys, A.J., Ren, W., Yang, G and Mukherjee, B.K. (2003), "Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field, frequency and dc bias", J. Appl. Phys., 94(2), 1155-1162. https://doi.org/10.1063/1.1587008
  95. Meirovitch, L. and Baruh, H. (1983), "A comparison of control techniques for large flexible systems", J. Guid. Control Dynam., 6(4), 302-310. https://doi.org/10.2514/3.19833
  96. Meirovitch, L. (1988), Control of distributed systems Large space structures: Dynamics and control, Springer, Berlin.
  97. Meirovitch, L. (1989), Dynamics and control of structures, John Wiley & Sons.
  98. Miller, S.E., Abramovich H. and Oshman Y. (1995), "Active distributed vibration control of anisotropic piezoelectric laminated plates", J. Sound. Vib., 183(5), 797-817. https://doi.org/10.1006/jsvi.1995.0287
  99. Mindlin, R.D. (1961), On the equations of motion of piezoelectric crystals N.I. Muskhelishvili 70th Birthday Volume 282-290.
  100. Mindlin, R.D. (1974), "Equations of high frequency vibrations of thermopiezoelecric crystal plates", Int. J. Solids Struct., 10(6), 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
  101. Mirzaeifar, R., Bahai, H. and Shahab, S. (2008), "Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(4), 045003 (8pp). https://doi.org/10.1088/0964-1726/17/4/045003
  102. Mitchell, J.A. and Reddy, J.N. (1995), "A refined plate theory for composite laminates with piezoelectric laminae", Int. J. Solids Struct., 32(16), 2345-2367. https://doi.org/10.1016/0020-7683(94)00229-P
  103. Moheimani, S.O.R. and Fleming, A.J. (2006), Piezoelectric transducers for vibration control and damping (Advances in industrial control), Springer-Verlag London.
  104. Narayanan, S. and Balamurugan, V. (2003), "Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators", J. Sound Vib., 262(3), 529-562. https://doi.org/10.1016/S0022-460X(03)00110-X
  105. Niezrecki, C., Brei, D., Balakrishnan, S. and Moskalik, A. (2001), "Piezoelectric actuation: state of the art", Shock Vib., 33(4), 269-280. https://doi.org/10.1177/058310240103300401
  106. Nowacki, W. (1978), "Some general theorems of thermopiezoelectricity", J. Therm. Stresses, 1(2), 171-82. https://doi.org/10.1080/01495737808926940
  107. Nowacki, J.P. (1982), "Steady state problems of thermopiezoelectricity", J. Therm. Stresses, 5, 183-194. https://doi.org/10.1080/01495738208942144
  108. Ochoa, O.O. and Reddy, J.N. (1992), Finite element analysis of composite laminates, Kluwer Academic.
  109. Oh, Jinho et al. (2007), "Enhanced lower-order shear deformation theory for fully coupled electro-thermomechanical smart laminated plates", Smart Mater. Struct., 16, 2229-2241. https://doi.org/10.1088/0964-1726/16/6/026
  110. Park, C.H. and Baz A. (1999), "Vibration damping and control using active constrained layer damping: A survey", Shock Vib. 31(5), 355-364. https://doi.org/10.1177/058310249903100501
  111. Perez, R., Albareda, A., Garcia, J.E., Tiana, J., Ringgaard, E. and Wolny, W.W. (2004), "Extrinsic contribution to the non-linearity in a PZT disc", Smart Mater. Struct., 37(19), 2648-2654.
  112. Perry, M.A., Bates, R.A., Atherton, M.A. and Wynn, H.P. (2008), "A finite-element-based formulation for sensitivity studies of piezoelectric systems", Smart Mater. Struct., 17(1), 015015 (7pp). https://doi.org/10.1088/0964-1726/17/01/015015
  113. Petyt, Maurice (1990), Introduction to finite element vibration analysis, Cambridge University Press.
  114. Piersol, A.G. and Paez, T.L. (2010), Harri's shock and vibration handbook, 6th Ed., Tata McGraw Hill.
  115. Proulx, B. and Cheng, L. (2000), "Dynamic analysis of piezoceramic actuation effects on plate vibrations", Thin Wall. Struct., 37(2), 147-162. https://doi.org/10.1016/S0263-8231(00)00013-6
  116. Raja, S., Rohwer, K. and Rose, M. (1999), "Piezothermoelastic modeling and active vibration control of laminated composite beams", J. Intell. Mater. Syst. Struct., 10(11), 890-899. https://doi.org/10.1106/GPPM-H4FU-8WUE-G63K
  117. Raja, S., Prathap, J. and Sinha, P.K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extensionbending and shear actuators", Smart Mater. Struct., 11(1), 63-71. https://doi.org/10.1088/0964-1726/11/1/307
  118. Raja, S., Sinha, P.K., Prathap, G. and Prathap, D. (2004), "Thermally induced vibration control of composite plates and shells with piezoelectric active damping", Smart Mater. Struct., 13(3), 939-950. https://doi.org/10.1088/0964-1726/13/4/032
  119. Rao, S.S. and Sunar, M. (1993), "Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures", AIAA J., 31(7), 1280-86. https://doi.org/10.2514/3.11764
  120. Rao, S.S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., 47(4), 113-123. https://doi.org/10.1115/1.3111074
  121. Rao, V., Damle, R., Tebbe, C. and Kern, F. (1994), "The adaptive control of smart structures using neural networks", Smart Mater. Struct, 3(3), 354-366. https://doi.org/10.1088/0964-1726/3/3/011
  122. Reaves, C.M. and Horta, L.G. (2003), "Piezoelectric actuator modeling using MSC/NASTRAN and MATLAB", NASA/TM-2003-212651.
  123. Reddy, J.N. (2005), An introduction to the finite element method , 3rd Ed., Tata McGaw-Hill Publishing.
  124. Robbins, D.H. and Reddy, J.N. (1991), "Analysis of piezoelecrically actuated beams using a layer-wise displacement theory", Comput. Struct., 41(2), 265-279. https://doi.org/10.1016/0045-7949(91)90430-T
  125. Roy, T. and Chakraborty, D. (2009), "Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient", Smart Mater. Struct., 18(11), 115006(12pp). https://doi.org/10.1088/0964-1726/18/11/115006
  126. Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), "Modeling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms", Smart Mater. Struct., 8(4), 490-498. https://doi.org/10.1088/0964-1726/8/4/306
  127. Saravanos, D.A. and Heylinger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates and shells", Appl. Mech. Rev., 52(10), 305-20. https://doi.org/10.1115/1.3098918
  128. Schulz, M.J., Sundaresan, M.J., Mcmichael, J., Clayton, D., Sadler, R. and Nagel, B. (2003), "Piezoelectric materials at elevated temperatures", J. Intell. Mater. Sys. Struct., 14(11), 693-705. https://doi.org/10.1177/1045389X03038577
  129. Shaik Dawood, M.S.I., Iannucci, L. and Greenhalgh, E.S. (2008), "Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators", Smart Mater. Struct., 17(2), 025002 (10pp). https://doi.org/10.1088/0964-1726/17/2/025002
  130. Sharma, M., Singh, S.P. and Sachdeva, B.L. (2005), "Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches", Smart Mater. Struct., 14(5), 1017-1024. https://doi.org/10.1088/0964-1726/14/5/040
  131. Sharma, M., Singh, S.P. and Sachdeva, B.L. (2007), "Modal control of a plate using fuzzy logic controller", Smart Mater. Struct., 16(4), 1331-1341. https://doi.org/10.1088/0964-1726/16/4/047
  132. Simmers Jr. G.E., Hodgkins, J.R., Mascarenas, D.D., Park, G. and Sohn, H. (2004), "Improved piezoelectric self-sensing actuation", J. Intell. Mater. Sys. Struct., 15(12), 941-953. https://doi.org/10.1177/1045389X04046308
  133. Simmers Jr. G.E., Sodano, H.A, Gyuhae, Park and Inman D.J. (2007), "Thermal protection for a self-sensing piezoelectric control system", Smart Mater. Struct., 16(6), 2492-2500. https://doi.org/10.1088/0964-1726/16/6/053
  134. Simo, J.C. and Armero, F. (1992), "Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 33(7), 1413-49. https://doi.org/10.1002/nme.1620330705
  135. Singh, S.P., Pruthi, H.S. and Agarwal, V.P. (2003), "Efficient modal control strategies for active control of vibrations", J. Sound. Vib., 262(3), 563-575. https://doi.org/10.1016/S0022-460X(03)00111-1
  136. Smittakorn, W. and Heyliger, P.R. (2000), "A discrete-layer model of laminated hygrothermopiezoelectric plates", Mech. Compos. Mater. 7(1), 79-104.
  137. Smyser, C.P. and Chandershekhara, K. (1997), "Robust vibration control of composite beams using piezoelectric devices and neural networks", Smart Mater. Struct, 6(2), 178-189. https://doi.org/10.1088/0964-1726/6/2/007
  138. Stolarski, H.S. (1991), "On a formulation of the quadrilateral with highly accurate in-plane bending behavior", First U.S. National Congress on Computational Mechanics, Chicago.
  139. Sun, C.T. and Zhang, X.D. (1995), "Use of thickness shear mode in adaptive sandwich structures", Smart Mater. Struct., 4(3), 202-206. https://doi.org/10.1088/0964-1726/4/3/007
  140. Sunar, M. and Rao, S.S. (1992), "Distributed thermopiezoelectric sensors and actuators in structural design", Proceedings of the 33rd AIAA-ASME-ACSE-AHS-ASC Structures, Structural Dyn and Mat Conf.
  141. Sunar, M. and Rao, S.S. (1997), "Thermopiezoelectric control design and actuator placement", AIAA J., 35(3), 534-539. https://doi.org/10.2514/2.127
  142. Sunar, M. and Rao, S.S. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric materials", Appl. Mech. Rev. 52, 1-16. https://doi.org/10.1115/1.3098923
  143. Sze, K.Y. and Pan, Y.S. (1999), "Hybrid finite element models for piezoelectric materials", J. Sound. Vib., 226(3), 519-547. https://doi.org/10.1006/jsvi.1999.2308
  144. Sze, K.Y. (2000), "On immunizing five-beta hybrid stress elements from "trapezoidal locking" in practical analysis", Int. J. Numer. Meth. Eng., 47, 907-920. https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4<907::AID-NME808>3.0.CO;2-A
  145. Sze, K.Y. and Yao, L.Q. (2000a), "A hybrid stress ANS solid shell elements and its generalization to smart structure modeling", Int. J. Numer. Meth. Eng., 48(4), 545-582. https://doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6
  146. Sze, K.Y. and Yao, L.Q. (2000b), "Modeling smart structures with segmented piezoelectric sensors and actuators", J. Sound. Vib., 235(3), 495-520. https://doi.org/10.1006/jsvi.2000.2944
  147. Tauchert, T.R., Ashida, F, Noda, N., Adali, S. and Verijenko, V. (2000), "Developments in thermopiezoelasticity with relevance to smart composite structures", Compos. Struct., 48(1-3), 31-38. https://doi.org/10.1016/S0263-8223(99)00070-7
  148. Tiersten, H.F. (1971), "On the nonlinear equations of thermoelectroelasticity", Int. J. Eng. Sci. 9(7), 587-604 https://doi.org/10.1016/0020-7225(71)90062-0
  149. Tzou, H.S. and Tseng, C.I. (1991), "Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and application", Mech. Syst. Signal Pr., 5(3), 215-231. https://doi.org/10.1016/0888-3270(91)90044-6
  150. Tzou, H.S. and Ye, R. (1993), "Piezothermoelasticity and control of piezoelectric laminates exposed to a steady state temperature field", ASME Intell. Struct. Mat. Vib., 58, 27-34.
  151. Tzou, H.S. and Hollkamp, J.J. (1994), "Collocated independent modal control with self-sensing orthogonal piezoelectric actuators (theory and experiment)", Smart Mater. Struct., 3(3), 277-284. https://doi.org/10.1088/0964-1726/3/3/003
  152. Tzou, H.S. and Fu, H.Q. (1994), "A study of segmentation of distributed piezoelectric sensors and actuators Part I:Theoretical analysis", J. Sound. Vib., 172(2), 247-259. https://doi.org/10.1006/jsvi.1994.1172
  153. Tzou, H.S. and Howard, R.V. (1994), "A piezothermoelastic shell theory applied to active structure", ASME T. J. Vib. Acoust., 116, 295-302. https://doi.org/10.1115/1.2930428
  154. Tzou, H.S. and Ye, R. (1994), "Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis", ASME J. Vib. Acoust., 116, 489-495. https://doi.org/10.1115/1.2930454
  155. Tzou, H.S. and Ye, R. (1996), "Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices", Mech. Syst. Signal Pr, 10(4), 459-469. https://doi.org/10.1006/mssp.1996.0032
  156. Varadan, V.V., Lim, Y.H. and Varadan, V.K. (1996), "Closed loop finite-element modeling of active/passive damping in structural vibration control", Smart Mater. Struct., 5(5), 685-694. https://doi.org/10.1088/0964-1726/5/5/016
  157. Vautier, B.J.G. and Moheimani, S.O.R. (2005), "Charge driven piezoelectric actuators for structural vibration control: issues and implementation", Smart Mater. Struct., 14(4), 575-586. https://doi.org/10.1088/0964-1726/14/4/016
  158. Wang, D., Fotinich, Y. and Carman, G.P. (1998), "Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics", J. Appl. Phys., 83(10), 5342-5350. https://doi.org/10.1063/1.367362
  159. Wang, S.Y., Quek, S.T. and Ang, T.T. (2001), "Vibration control of smart piezoelectric composite plates", Smart Mater. Struct., 10(4), 637-644. https://doi.org/10.1088/0964-1726/10/4/306
  160. Wang, D.A. and Huang, Y.M. (2002), "Robust vibration control of a beam using the H based controller with model error compensator", J. Sound. Vib., 254, 877-895. https://doi.org/10.1006/jsvi.2001.4133
  161. Wang, F., Tang, G.J. and Li, D.K. (2007), "Accurate modeling of a piezoelectric composite beam", Smart Mater. Struct., 16(5), 1595-1602. https://doi.org/10.1088/0964-1726/16/5/013
  162. William, Saunders R., Cole, D.G. and Robertshaw, H.H. (1994), "Experiments in piezostructure modal analysis for MIMO feedback control", Smart Mater. Struct., 3(2), 210-218. https://doi.org/10.1088/0964-1726/3/2/017
  163. Yang, S.M. and Chiu, J.S. (1994), "Dither motor design with concurrent sensing and actuating piezoelectric materials", Smart Mater. Struct., 3(2), 248-53. https://doi.org/10.1088/0964-1726/3/2/022
  164. Yang, S.M. and Lee, Y.J. (1994a), "Modal analysis of stepped beams with piezoelectric materials", J. Sound. Vib., 176(3), 289-300. https://doi.org/10.1006/jsvi.1994.1377
  165. Yang, S.M. and Lee Y.J. (1994b), "Interaction of structure vibration and piezoelectric actuation", Smart Mater. Struct., 3(4), 494-500. https://doi.org/10.1088/0964-1726/3/4/012
  166. Yang, S.M. and Jeng C.A. (1996), "Structural vibration suppression by concurrent piezoelectric sensor and actuator", Smart Mater. Struct.,5(6), 806-813. https://doi.org/10.1088/0964-1726/5/6/011
  167. Yang, S.M. and Bian, J.J. (1996), "Vibration suppression experiments on composite laminated plates using an embedded piezoelectric sensor and actuator", Smart Mater. Struct, 5(4), 501-507. https://doi.org/10.1088/0964-1726/5/4/014
  168. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784-797. https://doi.org/10.1088/0964-1726/16/3/028
  169. Yu, W. and Hodges, D.H. (2004), "A simple thermopiezoelastic model for smart composite plates with accurate stress recovery", Smart Mater. Struct., 13(4), 926-938. https://doi.org/10.1088/0964-1726/13/4/031
  170. Zhabihollah, A., Sedagahti, R. and Ganesan, R. (2007), "Active vibration suppression of smart laminated beams using layerwise theory and an optimal control strategy", Smart Mater. Struct., 16(6), 2190-2201. https://doi.org/10.1088/0964-1726/16/6/022
  171. Zhang, W., Qiu, J. and Tani, J. (2004), "Robust vibration control of a plate using self-sensing actuators of piezoelectric patches", J. Intell. Mater. Syst. Struct., 15(12), 923-931. https://doi.org/10.1177/1045389X04045153
  172. Zhang, X.D. and Sun, C.T. (1996), "Formulation of an adaptive sandwich beam", Smart Mater. Struct., 5(6), 814-23. https://doi.org/10.1088/0964-1726/5/6/012
  173. Zheng, S., Wang, S. and Chen, W. (2004), "The formulation of a refined hybrid enhanced assumed strain solid shell element and its application to model smart structures containing distributed piezoelectric sensors/actuators", Smart Mater. Struct, 13(4), 43-50. https://doi.org/10.1088/0964-1726/13/4/N02

Cited by

  1. Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures vol.20, pp.10, 2011, https://doi.org/10.1088/0964-1726/20/10/105023
  2. Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
  3. Active Flutter Control of a Supersonic Honeycomb Sandwich Beam Resting on Elastic Foundation with Piezoelectric Sensor/Actuator Pair vol.15, pp.03, 2015, https://doi.org/10.1142/S0219455414500527
  4. Optimal unimorph and bimorph configurations of piezocomposite actuators for bending and twisting vibration control of plate structures 2018, https://doi.org/10.1177/1045389X17742736
  5. Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method vol.14, pp.12, 2014, https://doi.org/10.3390/s140203477
  6. A Review of Prediction Methods for the Transient Vibration and Sound Radiation of Plates vol.32, pp.4, 2013, https://doi.org/10.1260/0263-0923.32.4.309
  7. Optimal control and design of composite laminated piezoelectric plates vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1177
  8. Nonlinear vibration control of a piezoelectric beam with a fuzzy logic controller vol.52, pp.1-2, 2016, https://doi.org/10.3233/JAE-162155
  9. A study on controller structure interaction of piezoelectric smart structures based on finite element method vol.25, pp.12, 2014, https://doi.org/10.1177/1045389X13507353
  10. Active structural vibration control: Robust to temperature variations vol.33, 2012, https://doi.org/10.1016/j.ymssp.2012.07.009
  11. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control vol.21, pp.4, 2012, https://doi.org/10.1088/0964-1726/21/4/045005
  12. Vibration attenuation of spacecraft in the presence of parametric and unmodeled dynamics uncertainties using collocated and noncollocated control: A comparative study 2017, https://doi.org/10.1177/1077546317700541
  13. Benchmark exact free vibration solutions for multilayered piezoelectric composite plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.035
  14. Vibration control of a lead zirconate titanate structure considering controller–structure interactions pp.2048-4046, 2018, https://doi.org/10.1177/1461348418795372
  15. Modeling of piezoelectric sensors adhesively bonded on trusses using a mathematical programming approach vol.58, pp.3, 2018, https://doi.org/10.1007/s00158-018-1933-3
  16. Active vibration control of a slewing spacecraft’s panel using H∞ control vol.18, pp.5, 2016, https://doi.org/10.21595/jve.2016.16887
  17. Robust vibration control of a flexible manipulator in presence of payload uncertainty vol.19, pp.5, 2011, https://doi.org/10.21595/jve.2017.18215
  18. SDRE controller considering Multi Observer applied to nonlinear IPMC model vol.20, pp.1, 2011, https://doi.org/10.12989/sss.2017.20.1.001
  19. 2D Free Vibration Solution of the Hybrid Piezoelectric Laminated Beams Using Extended Kantorovich Method vol.101, pp.1, 2011, https://doi.org/10.1007/s40032-019-00518-w
  20. Review on the use of piezoelectric materials for active vibration, noise, and flow control vol.29, pp.5, 2011, https://doi.org/10.1088/1361-665x/ab7541
  21. Controlling the Vibration Amplitude of a System with a Piezoelectric Element by Applying an Electric Voltage to it vol.1945, pp.1, 2021, https://doi.org/10.1088/1742-6596/1945/1/012045
  22. Sustainability of Civil Structures through the Application of Smart Materials: A Review vol.14, pp.17, 2011, https://doi.org/10.3390/ma14174824