DOI QR코드

DOI QR Code

Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer

  • Vaidya, Saiprasad (Trenchless Technology center, Louisiana Tech University) ;
  • Allouche, Erez N. (Faculty of Civil Engineering, Louisiana Tech University)
  • 투고 : 2010.06.25
  • 심사 : 2010.10.04
  • 발행 : 2011.01.25

초록

Geopolymer concrete is finding a growing number of niche applications in the field of civil engineering due to its high compressive strength and strength gain rate, retainage of structural properties in elevated temperature environments, chemical stability in highly acidic conditions and environmental benefits. Combining the above mentioned characteristics with induced electrical conductivity, could enable geopolymer cement to serve as a smart and sustainable cementitious material suitable for health monitoring of civil structures. Carbon fibers were added to fresh geopolymer and OPC (ordinary Portland cement) mixes to enhance their electrical conductivities. AC-impedance spectroscopy analysis was performed on the specimens with fiber fraction ranging from 0.008 to 0.8 with respect to the weight of cementitious binder, to measure their electrical resistivity values and to determine the maximum beneficial fiber content required to attain electrical percolation. Experimental observations suggest that CFR-geopolymer cement exhibits superior performance to CFR-OPC in terms of conducting electrical current.

키워드

참고문헌

  1. Aktan, A.E, Helmicki, A.J. and Hunt, V.J. (1998), "Issues in health monitoring for intelligent infrastructure", Smart Mater. Struct., 7(5), 674-692. https://doi.org/10.1088/0964-1726/7/5/011
  2. Bakharev, T. (2005), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
  3. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E, Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H. and Triantafillou, T.C. (2002), "Fiber-reinforced polymer composites for construction-tate-of-the-Art Review", J. Compos. Constr., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
  4. Balendran, R.V., Rana, T.M., Maqsood, T. and Tang, W.C. (2002), "Application of FRP bars as reinforcement in civil engineering structures", Struct. Surv., 20(2), 62-72. https://doi.org/10.1108/02630800210433837
  5. Banthia, N., Djeridane, S. and Pigeon, M. (1992), "Electrical resistivity of carbon and steel micro-fiber reinforced cements", Cement Concrete Res., 22(5), 804-814. https://doi.org/10.1016/0008-8846(92)90104-4
  6. Banthia, N. and Boyd, A.J. (2000), "Sprayed fiber-reinforced polymers for repairs", Can. J. Civil Eng., 27, 907- 915. https://doi.org/10.1139/l00-027
  7. Bing, C., Keru, W.B. and Wu, Y. (2004), "Conductivity of carbon fiber reinforced cement-based composites", Cement Concrete. Comp., 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
  8. Carlos, M. and Erez, N.A. (2010), "Geopolymer grout: eco-friendly, high-corrosion resistance, bactericide coating for manhole rehabilitation", Proceedings of the No-Dig Conference, Chicago, IL, May.
  9. Cheng, T.W. and Chiu, J.P. (2003), "Fire-resistant geopolymer produced by granulated blast furnace slag", Miner. Eng., 16(3), 205-210. https://doi.org/10.1016/S0892-6875(03)00008-6
  10. Chung, D.D.L. (2000), "Cement-matrix composites for smart structures", Smart Mater. Struct., 9(4), 389-401. https://doi.org/10.1088/0964-1726/9/4/302
  11. Cui, X.M., Zheng, G.J., Han, Y.C., Su, F. and Zhou, J. (2008), "A study on electrical conductivity of chemosynthetic $Al_{2}O_{3}-2SiO_{2}$ geopolymer materials", J. Power Sources, 184(2), 652-656. https://doi.org/10.1016/j.jpowsour.2008.03.021
  12. Davidovits, J. (1994), "Properties of geopolymer cements", Proceedings of the First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine, 131-149.
  13. Defazio, C., Arafa, M.D. and Balaguru, P.N. (2006), Geopolymer column wrapping, Internal Report, Center for Advanced Infrastructure & Transportation (CAIT), Rutgers, The State University of New Jersey, Piscataway, NJ.
  14. Diaz, E.I., Allouche, E.N. and Eklund, S. (2010), "Factors affecting the suitability of fly ash as source material for geopolymers", Fuel, 89(5), 992-996. https://doi.org/10.1016/j.fuel.2009.09.012
  15. Dragos-Marian, B., Chung, D.D.L and Lee, G.C. (2000), "Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement", Cement Concrete Res., 30(4), 651-659. https://doi.org/10.1016/S0008-8846(00)00204-0
  16. Farhad, R., Gordon, B.B., Jerry, A.Y. and Jong, S.L. (2003), "Resistance changes during compression of carbon fiber cement composites", J. Mat. Civil Eng. 15(5), 476-483. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(476)
  17. Fernandez, J.A. and Palomo, A. (2003), "Characterisation of fly ashes. Potential reactivity as alkaline cements", Fuel, 82(18), 2259-2265. https://doi.org/10.1016/S0016-2361(03)00194-7
  18. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low calcium fly ash based geopolymer concrete", Research Report GC 1, Curtin University of Technology, Perth, Australia.
  19. Hua, X. and Van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J. Mineer. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
  20. Hua, X. Van Deventer, J.S.J. (2002), "Geopolymerisation of multiple minerals", Miner. Eng., 15(12), 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8
  21. Kamhangrittirong, P., Suwanvitaya, P. and Suwanvitaya, P. (2006), "The effect of fly ash content and sodium hydroxide molarity on geopolymer", Proceedings of the International Conference on Pozzolan, Concrete and Geopolymer, Khon Kaen, Thailand, May.
  22. Kwesi, S.C. and Trevor, B. (2006), "Some key materials and process parameters governing geopolymer binder performance", Proceedings of the International Conference on Pozzolan, Concrete and Geopolymer, Khon Kaen, Thailand, May.
  23. Manuela, C. and Raffaele, Z. (2005), "Electrical conductivity of self-monitoring CFRC", Cement Concrete. Compos., 27(4), 463-469. https://doi.org/10.1016/j.cemconcomp.2004.09.001
  24. Mason, T.O., Campo, M.A., Hixson, A.D. and Woo, L.Y. (2002), "Impedance spectroscopy of fiber-reinforced cement composites", Cement Concrete Compos., 24(5), 457-465. https://doi.org/10.1016/S0958-9465(01)00077-4
  25. Mingqing, S., Qingping, L., Zhuoqiu, L. and Yaozu, H. (2000), "A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading", Cement Concrete Res., 30(10), 1593-1595. https://doi.org/10.1016/S0008-8846(00)00338-0
  26. Palomo, A., Grutzeckb, M.W. and Blancoa, M.T. (1999), "Alkali-activated fly ashes a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  27. Palomo, A., Fernandez, J.A., Lopez, H.C. and Lleyda, J.L. (2004), "Precast elements made of alkali-activated fly ash concrete", Proceedings of the Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Las Vegas, USA.
  28. Pu-Woei, C. and Chung, D.D.L. (1993), "Carbon fiber reinforced concrete as an electrical contact material for smart structures", Smart Mater. Struct., 2, 181-188. https://doi.org/10.1088/0964-1726/2/3/006
  29. Rangan, B.V., Sumajow, D., Wallah, S. and Hardjito, D. (2006), Studies on reinforced low calcium fly ash based geopolymer beams and columns, Internal Report, Faculty of Engineering, Curtin University of Technology, Perth, Australia.
  30. Swanepoel, J.C. and Strydom, C.A. (2002), "Utilisation of fly ash in a geopolymeric material", Appl. Geochem., 17(8), 1143-1148. https://doi.org/10.1016/S0883-2927(02)00005-7
  31. Taketo, U., Hiroshi, M., Futoshi, K. and Sudhir, M. (2002), "Use of fiber reinforced polymer composites as reinforcing material for concrete", J. Mater. Civil Eng., 14(3) 191-209. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(191)
  32. Torrents, J.M., Mason, T.O., Peled, A., Shah, S.P. and Garboczi, E.J. (2001), "Analysis of the impedance spectra of short conductive fiber-reinforced composites", J. Mater. Sci., 36(16), 4003-4012. https://doi.org/10.1023/A:1017986608910
  33. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), "The potential use of geopolymeric materials to immobilize toxic metals: Part I. Theory and Applications", Miner. Eng., 10(7), 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0
  34. Wallah, S.E. and Rangan, B.V. (2006), Low-calcium fly ash based geopolymer concrete : Long term properties, Research Report GC 2, Curtin University of Technology, Perth, Australia.
  35. Xiufeng, W., Yonglan, W. and Zhihao, J. (2002), "Electrical conductivity characterization and variation of carbon fiber reinforced cement composite", J. Mater. Sci., 37(1), 223-227. https://doi.org/10.1023/A:1013107623281
  36. Xuli, F. and Chung, D.D.L. (1996), "Self monitoring of fatigue damage in carbon fiber reinforced cement", Cement Concrete Res., 26(1), 15-20. https://doi.org/10.1016/0008-8846(95)00184-0
  37. Zhao, Q., Nair, B., Rahimian, T. and Balaguru, P. (2007), "Novel geopolymer based composites with enhanced ductility", J. Mater. Sci., 42(9), 3131-3137. https://doi.org/10.1007/s10853-006-0527-4

피인용 문헌

  1. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers vol.2015, 2015, https://doi.org/10.1155/2015/926809
  2. Graphene/fly ash geopolymeric composites as self-sensing structural materials vol.23, pp.6, 2014, https://doi.org/10.1088/0964-1726/23/6/065006
  3. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures vol.24, pp.4, 2015, https://doi.org/10.1088/0964-1726/24/4/045011
  4. In-situ preparation of fully stabilized graphene/cubic-leucite composite through graphene oxide/geopolymer vol.101, 2016, https://doi.org/10.1016/j.matdes.2016.03.139
  5. Fire resistant melamine based organic-geopolymer hybrid composites vol.59, 2015, https://doi.org/10.1016/j.cemconcomp.2015.03.007
  6. Electrical impedance-based crack detection of SFRC under varying environmental conditions vol.22, pp.1, 2011, https://doi.org/10.12989/sss.2018.22.1.001
  7. Multi-Channel Electrical Impedance-Based Crack Localization of Fiber-Reinforced Cementitious Composites under Bending Conditions vol.8, pp.12, 2011, https://doi.org/10.3390/app8122582
  8. The hygrothermal performance of concrete with coarse aggregates made of recycled concrete pavements vol.322, pp.None, 2011, https://doi.org/10.1051/matecconf/202032201006
  9. Bicomponent Carbon Fibre within Woven Fabric for Protective Clothing vol.12, pp.12, 2011, https://doi.org/10.3390/polym12122824