References
- Argyris, J. and Tanek, L. (1994), "Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method", Comput. Meth. Appl. Mech. Eng., 113, 207-251. https://doi.org/10.1016/0045-7825(94)90047-7
- Altenbach, H., Altenbach, J. and Kissing, W. (2004), Mechanics of Composite Structural Elements, Springer Verlag, Berlin Heidelberg New York.
- Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comput. Meth. Appl. Mech. Eng., 196(4-6), 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
- Arciniega, R.A. and Reddy, J.N. (2007), "Large deformation analysis of functionally graded shells", Int. J. Solids Struct., 44(6), 2036-2052. https://doi.org/10.1016/j.ijsolstr.2006.08.035
- Barbero, E.J. and Reddy, J.N. (1990), "Nonlinear analysis of composite laminates using a generalized laminated plate theory", AIAA J., 28(11), 1987-1994. https://doi.org/10.2514/3.10509
- Bathe, K.J. (1996), Finite Element Procedures in Engineering Analysis, Prentice Hall.
- Hinton, E., Vuksanovic, Dj. and Huang, H. (1988), Finite Element Free Vibrations and Buckling Analysis of Initially Stressed Mindlin Plates, In: Hinton E. editors. Numerical Methods and Software for Dynamic Analysis of Plates and Shells, Swansea, Pineridge Press, UK, 93-167.
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice Hall.
- Cetkovic, M. (2005), Application of Finite Element Method on Generalized Laminated Plate Theory, Master Thesis, in serbian, Faculty of Civil Engineering in Belgrade, Serbia.
- Cetkovic, M. and Vuksanovi , Dj. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039
- Kuppusamy, T., Nanda, A. and Reddy, J.N. (1984), "Materially nonlinear analysis of laminated composite plates", Compos. Struct., 2(4), 315-328. https://doi.org/10.1016/0263-8223(84)90003-5
- Kuppusamy, T. and Reddy, J.N. (1984), "A three-dimensional nonlinear analysis of cross-ply rectangular composite plates", Comput. Struct., 18(2), 263-272. https://doi.org/10.1016/0045-7949(84)90124-X
- Lee, S.J., Reddy, J.N. and Rostam-Abadi, F. (2006), "Nonlinear finite element analysis of laminated composite shells with actuating layers", Finite Elem. Analy. Des., 43(1), 1-21. https://doi.org/10.1016/j.finel.2006.04.008
- Laulusa, A. and Reddy, J.N. (2004), "On shear and extensional locking in nonlinear composite beams", Eng. Struct., 26(2), 151-170. https://doi.org/10.1016/S0141-0296(03)00175-5
- Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice Hall.
- Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217
- Ochoa, O.O. and Reddy, J.N. (1992) Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers.
- Polat, C. and Ulucan, Z. (2007), "Geometrically non-linear analysis of axisymmetric plates and shells", Int. J. Sc. Technol., 2(1), 33-40.
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates", Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Putcha, N.S. and Reddy, J.N. (1986), "A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates", Comput. Struct., 22(4), 529-538. https://doi.org/10.1016/0045-7949(86)90002-7
- Reddy, J.N., Barbero, E.J. and Teply, J.L. (1989), "A plate bending element based on a generalized laminated plate theory", Int. J. Numer. Meth. Eng., 28, 2275-2292. https://doi.org/10.1002/nme.1620281006
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates-theory and Analysis, CRC press.
- Reddy, J.N. (2008), An Introduction to Continuum Mechanics, Cambridge University Press.
- Reddy, J.N. and Chao, W.C. (1981), "Non-linear bending of thick rectangular, laminated composite plates", Int. J. Nonlin. Mech., 16(3/4), 291-301. https://doi.org/10.1016/0020-7462(81)90042-1
- Reddy, J.N. and Haung, C.L. (1981), "Nonlinear axisymmetric bending of annular plates with varying thickness", Int. J. Solids Struct., 17(8), 811-825. https://doi.org/10.1016/0020-7683(81)90090-1
- Reddy, J.N. and Chao, W.C. (1983), "Nonlinear bending of bimodular-material plates", Int. J. Solids Struct., 19(3), 229-237. https://doi.org/10.1016/0020-7683(83)90059-8
- Reddy, Y.S.N., Dakshina Moorthy, C.M. and Reddy, J.N. (1995), "Non-linear progressive failure analysis of laminated composite plates", Int. J. Nonlin. Mech., 30(5), 629-649. https://doi.org/10.1016/0020-7462(94)00041-8
- Reddy, J.N. (1984), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Solids Struct., 20(9-10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
- Tanriover, H. and Senocak, E. (2004), "Large deflection analysis of unsymmetrically laminated composite plates: analytical-numerical type approach", Int. J. Nonlin. Mech., 39, 1385-1392. https://doi.org/10.1016/j.ijnonlinmec.2004.01.001
- Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), "Shear flexible element based on coupled displacement field for large deflection analysis of laminated plates", Comput. Struct., 81, 309-320. https://doi.org/10.1016/S0045-7949(02)00450-9
- Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), "Shear flexible element based on coupled displacement field for large deflection analysis of laminated plates", Comput. Struct., 81, 309-320. https://doi.org/10.1016/S0045-7949(02)00450-9
- Vuksanovi, Dj. (2000), "Linear analysis of laminated composite plates using single layer higher-order discrete models", Compos. Struct., 48, 205-211. https://doi.org/10.1016/S0263-8223(99)00096-3
- Zhang, Y., Wang, S. and Petersson, B. (2003), "Large deflection analysis of composite laminates", J. Mater. Pro. Technol., 138, 34-40. https://doi.org/10.1016/S0924-0136(03)00045-1
- Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72, 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
- Zhang, Y.X. and Kim, K.S. (2005), "A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis of laminated composite plates", Comput. Meth. Appl. Mech. Eng., 194, 4607- 4632. https://doi.org/10.1016/j.cma.2004.11.011
Cited by
- The effect of in-plane deformations on the nonlinear dynamic response of laminated plates vol.42, pp.4, 2012, https://doi.org/10.12989/sem.2012.42.4.589
- Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model vol.125, 2015, https://doi.org/10.1016/j.compstruct.2015.01.051
- Nonlinear bending analysis of laminated composite stiffened plates vol.17, pp.6, 2014, https://doi.org/10.12989/scs.2014.17.6.867
- Thermal buckling of laminated composite plates using layerwise displacement model vol.142, 2016, https://doi.org/10.1016/j.compstruct.2016.01.082
- Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation vol.114, 2016, https://doi.org/10.1016/j.oceaneng.2016.01.034
- A Galerkin Layerwise Formulation for three-dimensional stress analysis in long sandwich plates vol.24, pp.5, 2011, https://doi.org/10.12989/scs.2017.24.5.523
- An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2011, https://doi.org/10.12989/sem.2020.74.3.365
- Buckling of laminated composite plates with elastically restrained boundary conditions vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.577