References
- Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29, 673-687. https://doi.org/10.12989/sem.2008.29.6.673
- Biswas, P.K., Sengupta P.R. and Debnath, L. (1996), "Axisymmetric Lamb's problem in a semi- infinite micropolar viscoelastic medium", Int. Math. Math. Sci., 19, 815-820. https://doi.org/10.1155/S0161171296001135
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-923.
- Eringen, A.C. (1967), "Linear theory of micropolar viscoelasticity", Int. J. Eng. Sci., 5, 191-204. https://doi.org/10.1016/0020-7225(67)90004-3
- Eringen, A.C. (1984), "Plane waves in non-local micropolar elasticity", Int. J. Eng. Sci., 22, 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
- Eringen, A.C. (1999), Microcontinuum Field Theories, I. Foundations and Solids, Springer-Verlag, New York.
- EI-Karamany Ahmed, S. (2003), "Uniqueness and reciprocity theorems in generalized linear micropolar thermoviscoelasticity", Int. J. Eng. Sci., 40, 2097-2117.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
- Kozar, I. and Ozbolt, J. (2010), "Some aspects of load-rate sensitivity in visco-elastic microplane material model", Comput. Concrete, 7, 317-329. https://doi.org/10.12989/cac.2010.7.4.317
- Kumar, R. (2000), "Wave propagation in a micropolar viscoelastic generalized thermoelastic solid", Int. J. Eng. Sci., 38, 1377-1395. https://doi.org/10.1016/S0020-7225(99)00057-9
- Kumar, R. and Partap, G. (2008), "Analysis of free vibrations for Rayleigh-Lamb waves in a micropolar viscoelastic plate", Int. J. Appl. Mech. Eng., 13, 383-397.
- Kumar, R. and Sharma, N. (2008), "Propagation of waves in micropolar viscoelastic generalized themoelastic solids having interficial imperfections", Theor. Appl. Fract. Mec., 50, 226-234. https://doi.org/10.1016/j.tafmec.2008.07.010
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- McCarthy, M.F. and Eringen, A.C. (1969), "Micropolar viscoelastic waves", Int. J. Eng. Sci., 7, 447-458. https://doi.org/10.1016/0020-7225(69)90032-9
- Nowacki, W. (1966), "Couple stresses in the theory of thermoelasticity III", Bull. Acad. Polon. Sci. Ser. Sci. Tech., 14, 801-809.
- Sharma, J.N. (2005), "Some considerations on the Rayleigh-Lamb wave propagation in visco-thermoelastic plate", J. Vib. Control, 11, 1311-1335. https://doi.org/10.1177/1077546305058267
- Sharma, J.N. and Othman, Mohamad I.A. (2007), "Effect of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves", Int. J. Solids Struct., 44, 4243-4255. https://doi.org/10.1016/j.ijsolstr.2006.11.016
- Sharma, J.N., Chand, R. and Othman, Mohamad I.A. (2009), "On the propagation of Lamb waves in viscothermoelastic plates under fluid loading", Int. J. Eng. Sci., 47, 391-404. https://doi.org/10.1016/j.ijengsci.2008.10.008
- Simonetti, F. (2004), "Lamb wave propagation in elastic plates coated with viscoelastic materials", J. Acoust. Soc. Am., 115, 2041-2053. https://doi.org/10.1121/1.1695011
Cited by
- Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1201
- Analysis of stress, magnetic field and temperature on coupled gravity-Rayleigh waves in layered water-soil model vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.111
- Thermoviscoelastic Behavior in a Circular HSLA Steel Plate vol.36, pp.10, 2013, https://doi.org/10.1080/01495739.2013.818895
- Dispersion of torsional surface wave in an intermediate vertical prestressed inhomogeneous layer lying between heterogeneous half spaces vol.23, pp.19, 2017, https://doi.org/10.1177/1077546316628706
- A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.089
- Thermoviscoelastic orthotropic solid cylinder with variable thermal conductivity subjected to temperature pulse heating vol.13, pp.2, 2011, https://doi.org/10.12989/eas.2017.13.2.201