DOI QR코드

DOI QR Code

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S. (Faculty of Civil Engineering, Technical University of Kosice) ;
  • Tomko, M. (Faculty of Civil Engineering, Technical University of Kosice)
  • 투고 : 2009.12.03
  • 심사 : 2010.12.08
  • 발행 : 2011.04.25

초록

In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

키워드

참고문헌

  1. Brew, J.S. and Lewis, W.J. (2003), "Computational form-finding of tension membrane structures - Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes", Int. J. Numer. Meth. Eng., 56(5), 651-668. https://doi.org/10.1002/nme.579
  2. Buchholdt, H.A. (1998), Introduction to Cable Roof Structures, 2nd edition, University Press, Cambridge.
  3. COSMOS/M (2002), Version Geostar 2.8, Structural Research Analysis Centre, Los Angeles.
  4. Gasparini, D. and Gautam, V. (2002), "Geometrically non-linear static behavior of cable structures", J. Struct. Eng., 128(10), 1317-1329. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1317)
  5. Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge.
  6. Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14(3-4), 325-333. https://doi.org/10.1016/0045-7949(81)90016-X
  7. Jonatowski, J.J. and Birnstiel, C. (1970), "Inelastic stiffened suspension cable structures", J. Struct. Div., 96(6), 1143-1166.
  8. Kanno, Y., Ohsaki, M. and Ito, J. (2002), "Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming", Int. J. Numer. Meth. Eng., 55(9), 1079-1114. https://doi.org/10.1002/nme.537
  9. Kassimali, A. and Parsi-Feraidoonian, H. (1987), "Strength of cable trusses under combined loads", J. Struct. Eng., 113(5), 907-924. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(907)
  10. Kmet, S. (1994), "Rheology of pre-stressed cable structures", Proceedings of the International Conference on Computational Structures Technology, (Eds. Papadrakakis M. and Topping B.H.V.), Athens, September.
  11. Kmet, S. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations", Struct. Eng. Mech. 18(5), 565-589. https://doi.org/10.12989/sem.2004.18.5.565
  12. Kmet, S. and Holickova, L. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study", Struct. Eng. Mech., 18(5), 591-607. https://doi.org/10.12989/sem.2004.18.5.591
  13. Kmet, S. and Kokorudova, Z. (2006), "Non-linear analytical solution for cable trusses", J. Eng. Mech.-ASCE, 132(1), 119-123. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(119)
  14. Krishna, P., Gupta, V.K., Ahuja, A.K. and Mittal, A.K. (1982), "Performance of cable trusses under static loads", J. Struct. Div., 108(1), 265-282.
  15. Mollmann, H. (1974), Analysis of Hanging Roofs by the Displacement Method, Lyngby, Polyteknisk Forlag ch.5, Denmark.
  16. Moskalev, N.S. (1980), Constructions of Suspension Roofs, Strojizdat, Moscow. (in Russian)
  17. Saafan, S.A. (1970), "Theoretical analysis of suspension roofs", J. Struct. Div., 96(2), 393-405.
  18. Schleyer, F.K. (1969), Tensile Structures, (Ed. Otto, F.), Vol.2, ch4, The MIT Press, Cambridge.
  19. Sultan, C., Corless, M. and Skelton, E.R. (2001), "The pre-stressability problem of tensegrity structures: some analytical solutions", Int. J. Solids Struct., 38(30-31), 5223-5252. https://doi.org/10.1016/S0020-7683(00)00401-7
  20. Talvik, I. (2001), "Finite element modelling of cable networks with flexible supports", Comput. Struct., 79(26-28), 2443-2450. https://doi.org/10.1016/S0045-7949(01)00077-3
  21. Urelius, D.E. and Fowler, D.W. (1974), "Behaviour of pre-stressed cable truss structure", J. Struct. Div., 100(8), 1627-1641.