DOI QR코드

DOI QR Code

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir (Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of Mechanics) ;
  • Civalek, Omer (Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of Mechanics)
  • Received : 2011.02.01
  • Accepted : 2011.06.22
  • Published : 2011.09.25

Abstract

In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Keywords

References

  1. Baltacolu, A.K. (2009), "Nonlinear static and dynamic analyses of laminated composite plates and shells restingon nonlinear elastic foundations", M.Sc. Seminar, Graduate school of natural and applied sciences, Akdeniz University, (in Turkish).
  2. Bhaskar, A. and Dumir, P.C. (1988), "Nonlinear vibration of orthotropic thin rectangular plates on elastic foundations", J. Sound Vib., 125(1), 1-11. https://doi.org/10.1016/0022-460X(88)90410-5
  3. Chen, C.S. and Fung, C.P. (2004), "Large-amplitude vibration of an initially stressed plate on elastic foundations", Comp. Struct., 82(9-10), 689-701. https://doi.org/10.1016/j.compstruc.2004.02.018
  4. Chien, R.D. and Chen, C.S. (2005), "Nonlinear vibration of laminated plates on a nonlinear elastic foundation", Compos. Struct., 70(1), 90-99. https://doi.org/10.1016/j.compstruct.2004.08.015
  5. Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin-Walled Struct., 44(8), 852-860. https://doi.org/10.1016/j.tws.2006.08.016
  6. Civalek, O. (2004), "Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ)", PhD. Thesis, Fyrat University, (in Turkish), Elazig.
  7. Civalek, O. (2005), "Geometrically Nonlinear Dynamic Analysis of Doubly Curved Isotropic Shells Resting on Elastic Foundation by a Combination of HDQ-FD Methods", Int. J. Pressure Vessels and Piping, 82(6), 470-479. https://doi.org/10.1016/j.ijpvp.2004.12.003
  8. Civalek, O. (2006), "Harmonic Differential Quadrature-Finite differences Coupled Approaches for Geometrically Nonlinear Static and Dynamic Analysis of Rectangular Plates on Elastic Foundation", J. Sound Vib., 294(4-5), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041
  9. Civalek, O. (2007a), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model. 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023
  10. Civalek, O. (2007b), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25, 127-130. https://doi.org/10.12989/sem.2007.25.1.127
  11. Dai, K.Y., Liu, G.R., Lim, K.M. and Chen, X.L. (2004), "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vib., 269(3-5), 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0
  12. Dumir, P.C. (1988), "Nonlinear dynamic response of isotropic thin rectangular plates on elastic foundations", Acta Mechanica, 71(1-4), 233-244. https://doi.org/10.1007/BF01173950
  13. Dumir, P.C. and Bhaskar, A. (1988), "Nonlinear static analysis of rectangular plates on elastic foundations by the orthogonal point collocation method", Comp. Meth. Appl. Mech. Eng., 67(1), 111-124. https://doi.org/10.1016/0045-7825(88)90071-0
  14. Ganapathi, M., Varadan, T.K. and Sarma, B.S. (1991), "Nonlinear flexural vibrations of laminated orthotropic plates", Comp. Struct., 39(6), 685-688. https://doi.org/10.1016/0045-7949(91)90211-4
  15. Kant, T., Arora, C.P. and Varaiya, J.H. (1992), "Finite element transient analysis of composite and sandwich plates based on a refined theory and mode superposition method", Compos. Struct., 22(2), 109-120. https://doi.org/10.1016/0263-8223(92)90071-J
  16. Kant, T. and Kommineni, J.R. (1994), "Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and $C^0$ finite elements", Comp. Struct., 51(1), 123-134.
  17. Kant, T. and Mallikarjuna, B.N. (1989), "Transient dynamic of composite sandwich plates using 4-, 8-, 9- noded isoparametric quadrilateral elements", Finite Elements in Anal. Design, 5(4), 307-318. https://doi.org/10.1016/0168-874X(89)90010-3
  18. Kant, T., Ravichandran, R.V., Pandya, B.N. and Mallikarjuna, B.N. (1988), "Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory", Compos. Struct., 9(4), 319-342. https://doi.org/10.1016/0263-8223(88)90051-7
  19. Kant, T., Varaiya, J.H. and Arora, C.P. (1990), "Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes", Comp. Struct., 36(3), 401-420. https://doi.org/10.1016/0045-7949(90)90279-B
  20. Lai, S.K. and Xiang, Y. (2009), "DSC analysis for buckling and vibration of rectangular plates with elastically restrained edges and linearly varying in-plane loading", Int. J. Struct. Stab. Dynamics, 9(3), 511-531. https://doi.org/10.1142/S0219455409003119
  21. Liew, K.M., Han, J.-B. and Xiao, Z.M. (1996), "Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility", Int. J. Solids Struct., 33(18), 2647-2658. https://doi.org/10.1016/0020-7683(95)00174-3
  22. Liew, K.M. and Huang, Y.Q. (2003), "Bending and buckling analysis of thick symmetric rectangular laminates using the moving least-squares differential quadrature method", Int. J. Mech. Sci., 45(1), 95-114. https://doi.org/10.1016/S0020-7403(03)00037-7
  23. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2003), "Vibration analysis of symmetrically laminated plates based FSDT using the moving least squares differential quadrature method", Comput. Meth. Appl. Mech. Eng., 192(19), 2203-2222. https://doi.org/10.1016/S0045-7825(03)00238-X
  24. Liew, K.M., Wang, J., Tan, M.J. and Rajendran, S. (2004), "Nonlinear analysis of laminated composite plates using the mesh-free kp-Ritz method based on FSDT", Comp. Meth. Appl. Mech. Eng., 193(45-47), 4763-4779. https://doi.org/10.1016/j.cma.2004.03.013
  25. Liew, K.M., Zhang, J.Z., Ng, T.Y. and Meguid, S.A. (2003), "Three-dimensional modeling of elastic bonding in composite laminates using layerwise differential quadrature", Int. J. Solids Struct., 40(7), 1745-1764. https://doi.org/10.1016/S0020-7683(02)00666-2
  26. Liu, G.R. and Achenbach, J.D. (1994), "A strip element method for stress analysis of anisotropic linearly elastic solid", ASME J. Appl. Mech., 61(2), 270-277. https://doi.org/10.1115/1.2901440
  27. Liu, G.R. and Chen, X.L. (2001), "A mesh free method for static and free vibration analysis of thin plates of arbitrary shape", J. Sound Vib., 241(5), 839-855. https://doi.org/10.1006/jsvi.2000.3330
  28. Liu, G.R. and Chen, X.L. (2002), "Bucking of symmetrically laminated composite plates using the element-free Galerkin method", Int. J. Struct. Stab. Dynamics, 2(3), 281-294. https://doi.org/10.1142/S0219455402000634
  29. Manoj, T., Ayyappan, M., Krishnan, K.S. and Rao, B. N. (2000), "Nonlinear vibration analysis of thin laminated rectangular plates on elastic foundations", ZAMM, 80(3), 183-192. https://doi.org/10.1002/(SICI)1521-4001(200003)80:3<183::AID-ZAMM183>3.0.CO;2-P
  30. Nath, Y., Kumar, S. (1995a), "Chebyshev series solution to nonlinear boundary value problems in rectangular domain", Comp. Meth. Appl. Mech. Eng., 125(1-4), 41-52. https://doi.org/10.1016/0045-7825(95)00801-7
  31. Nath, Y., Prithviraju, M. and Mufti, A.A. (2006), "Nonlinear static and dynamics of antisymmetric composite laminated square plates supported on nonlinear elastic subgrade", Commun. Nonlinear Sci. Numer. Simulat., 11(3), 340-354. https://doi.org/10.1016/j.cnsns.2004.11.003
  32. Nath, Y. and Shukla, K.K. (2001), "Non-linear transient analysis of moderately thick laminated composite plates", J. Sound. Vib., 273(3), 509-526.
  33. Nath, Y., Varma, K.K. and Mahrenholtz, D. (1986), "Nonlinear Dynamic response of rectangular plates on linear elastic foundation", Comp. Struct., 24(3), 391-399. https://doi.org/10.1016/0045-7949(86)90316-0
  34. Seckin, A. and Sarygul, A.S. (2009a), "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification", J. Sound Vib. 315(1-2), 197-211.
  35. Seckin, A. and Sarygul, A.S. (2009b), "A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution-mode superposition approach", J. Sound Vib., 320(4-5), 1004-1022. https://doi.org/10.1016/j.jsv.2008.08.031
  36. Shen, H.-S. (1999), "Large deflection of composite laminated plates under transverse and in-plane loads resting on elastic foundation", Compos. Struct., 45(2), 115-123. https://doi.org/10.1016/S0263-8223(99)00007-0
  37. Shen, H.-S. (2000a), "Nonlinear analysis of composite laminated thin plates subjected to lateral pressure and thermal loading and resting on elastic foundations", Compos. Struct., 49(2), 115-128. https://doi.org/10.1016/S0263-8223(99)00053-7
  38. Shen, H.-S. (2000b), "Nonlinear bending of shear deformable laminated plates under transverse and in-plane loads resting on elastic foundation", Compos. Struct., 50(2), 131-142. https://doi.org/10.1016/S0263-8223(00)00088-X
  39. Shen, H.-S. (2000c), "Nonlinear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations", J. Strain Analy., 35(2), 93-108. https://doi.org/10.1243/0309324001514053
  40. Shih, Y.-S. and Blotter, P.T. (1993), "Non-linear vibration analysis of arbitrarily laminated thin rectangular plates on elastic foundations", J. Sound Vib., 167(3), 433-459. https://doi.org/10.1006/jsvi.1993.1347
  41. Shukla, K.K. and Nath, Y. (2000), "Non-linear analysis of moderately thick laminated rectangular plates", J. Eng. Mech. ASCE, 26, 831-838.
  42. Shukla, K.K., Nath, Y. and Kreuzer, E. (2005), "Buckling and transient behaviour of layered composite plates under thermomechanical loading", ZAMM Journal, 85(3), 163-175. https://doi.org/10.1002/zamm.200310170
  43. Sofiyev, A.H. (2010), "Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation", Mech. Research Commun, 37(6), 539-544. https://doi.org/10.1016/j.mechrescom.2010.07.019
  44. Teo, T.M. and Liew, K.M. (2002), "Differential cubature method for analysis of shear deformable rectangular plates on Pasternak foundations", Int. J. Mech. Sci., 44(6), 1179-1194. https://doi.org/10.1016/S0020-7403(02)00034-6
  45. Wang, Y.Y., Lam, K.Y. and Liu, G.R. (2000), "Bending Analysis of Classical Symmetric Laminated Plates by the Strip Element Method", Mech. Compos. Mater. Struct. 7(3), 225-247. https://doi.org/10.1080/10759410050031095
  46. Wang, Y.Y., Lam, K.Y, and Liu, G. R. (2001), "A Strip Element Method for the Transient Analysis of Symmetric Laminated Plates", Int. J. Solids Struct., 38(2), 241-259. https://doi.org/10.1016/S0020-7683(00)00035-4
  47. Wei, G.W. (1999), "Discrete singular convolution for the solution of the Fokker-Planck equations", J. Chem. Phys., 110, 8930-8942. https://doi.org/10.1063/1.478812
  48. Wei, G.W. (2001a), "A new algorithm for solving some mechanical problems", Comp. Meth. Appl. Mech. Eng., 190(15-17), 2017-2030. https://doi.org/10.1016/S0045-7825(00)00219-X
  49. Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23(9), 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
  50. Wei, G.W., Kouri, D.J. and Hoffman, D.K. (1998), "Wavelets and distributed approximating functionals", Comp. Phys. Commun., 112(1), 1-6. https://doi.org/10.1016/S0010-4655(98)00051-4
  51. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2001), "The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution", Int. J. Mech. Sci., 43(8), 1731-1746. https://doi.org/10.1016/S0020-7403(01)00021-2
  52. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55(8), 913-946. https://doi.org/10.1002/nme.526
  53. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002b), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055
  54. Xiang, Y., Lai, S.K. and Zhou, L. (2010), "DSC-element method for free vibration analysis of rectangular Mindlin plates", Int. J. Mech. Sci., 52(4), 548-560. https://doi.org/10.1016/j.ijmecsci.2009.12.001
  55. Xiang, Y., Lai, S.K., Zhou, L. and Lim, C.W. (2010), "DSC-Ritz element method for vibration analysis of rectangular Mindlin plates with mixed edge supports", Eur. J. Mech. A/Solids, 29(4), 619-628. https://doi.org/10.1016/j.euromechsol.2009.12.007
  56. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications", Int. J. Numer. Meth. Eng., 55(8), 947-971. https://doi.org/10.1002/nme.527
  57. Zhao, S. and Wei, G.W. (2003), "Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation", SIAM J. Sci. Comput., 25(1), 127-147. https://doi.org/10.1137/S1064827501390972
  58. Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beams by an iteratively matched boundarymethod", J. Sound Vib., 284(1-2), 487-493. https://doi.org/10.1016/j.jsv.2004.08.037
  59. Zhao, Y.B. and Wei, G.W. (2002), "DSC analysis of rectangular plates with non-uniform boundary conditions", J. Sound Vib., 255(2), 203-228. https://doi.org/10.1006/jsvi.2001.4150
  60. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39(1), 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4

Cited by

  1. Thermal post-buckling and vibration analysis of a symmetric sandwich beam with clamped and simply supported boundary conditions 2017, https://doi.org/10.1007/s00419-017-1326-x
  2. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  3. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  4. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  5. Nonstationary Deformation of Longitudinally and Transversely Reinforced Cylindrical Shells on an Elastic Foundation vol.52, pp.1, 2016, https://doi.org/10.1007/s10778-016-0733-y
  6. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  7. Nonstationary Vibrations of Transversely Reinforced Elliptic Cylindrical Shells on an Elastic Foundation vol.52, pp.6, 2016, https://doi.org/10.1007/s10778-016-0785-z
  8. A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations vol.7, pp.1, 2016, https://doi.org/10.1016/j.asej.2015.11.016
  9. A comparative study for bending of cross-ply laminated plates resting on elastic foundations vol.15, pp.6, 2015, https://doi.org/10.12989/sss.2015.15.6.1569
  10. Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads vol.44, pp.2, 2011, https://doi.org/10.12989/sem.2012.44.2.139
  11. Nonlinear vibration of laminated composite plates subjected to subsonic flow and external loads vol.22, pp.6, 2011, https://doi.org/10.12989/scs.2016.22.6.1261
  12. Energy based approach for solving conservative nonlinear systems vol.13, pp.2, 2017, https://doi.org/10.12989/eas.2017.13.2.131
  13. Nonlinear vibration of multi-body systems with linear and nonlinear springs vol.25, pp.4, 2011, https://doi.org/10.12989/scs.2017.25.4.497
  14. Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2011, https://doi.org/10.12989/sss.2017.20.6.709
  15. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
  16. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2011, https://doi.org/10.12989/scs.2018.26.6.733
  17. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2011, https://doi.org/10.12989/sem.2018.66.1.027
  18. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2011, https://doi.org/10.12989/scs.2018.27.4.465
  19. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2011, https://doi.org/10.12989/scs.2018.27.5.567
  20. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  21. Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
  22. Nonlinear thermoelastic analysis of FGM thick plates vol.8, pp.5, 2011, https://doi.org/10.12989/csm.2019.8.5.439
  23. Hygrothermal Post-Buckling Analysis of Laminated Composite Beams vol.11, pp.1, 2011, https://doi.org/10.1142/s1758825119500091
  24. Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate vol.7, pp.1, 2011, https://doi.org/10.12989/anr.2019.7.1.025
  25. Nonlinear behavior of fiber reinforced cracked composite beams vol.30, pp.4, 2019, https://doi.org/10.12989/scs.2019.30.4.327
  26. Geometric Mapping For Non-Rectangular Plates with Micro/Nano or Macro Scaled under Different Effects. vol.11, pp.3, 2011, https://doi.org/10.24107/ijeas.641211
  27. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  28. Symmetric Thermo-Electro-Elastic Response of Piezoelectric Hollow Cylinder Under Thermal Shock Using Lord-Shulman Theory vol.20, pp.5, 2011, https://doi.org/10.1142/s0219455420500595
  29. New Analytic Shear Buckling Solution of Clamped Rectangular Plates by a Two-Dimensional Generalized Finite Integral Transform Method vol.20, pp.2, 2011, https://doi.org/10.1142/s0219455420710029
  30. Multipulse Homoclinic Orbits and Chaotic Dynamics of a Reinforced Composite Plate with Carbon Nanotubes vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/7310187
  31. Vibration Analysis of Piezoelectric Composite Plate Resting on Nonlinear Elastic Foundations Using Sinc and Discrete Singular Convolution Differential Quadrature Techniques vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/7592302
  32. Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
  33. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect vol.34, pp.2, 2011, https://doi.org/10.12989/scs.2020.34.2.279
  34. Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix vol.13, pp.4, 2020, https://doi.org/10.1007/s12517-020-5168-4
  35. Revisiting the electroelastic solution for an FGPM thick-walled cylinder subjected to mechanical and electric loadings vol.7, pp.2, 2011, https://doi.org/10.1088/2053-1591/ab7401
  36. Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.331
  37. Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects vol.8, pp.3, 2020, https://doi.org/10.12989/anr.2020.8.3.245
  38. Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2011, https://doi.org/10.12989/sem.2020.74.2.297
  39. Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method vol.231, pp.6, 2011, https://doi.org/10.1007/s00707-020-02653-3
  40. Buckling of laminated composite plates with elastically restrained boundary conditions vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.577
  41. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.485
  42. Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.537
  43. Three-Dimensional Analysis of the Free Vibrations of Layered Composite Plates Based on the Semianalytic Finite-Element Method vol.56, pp.4, 2011, https://doi.org/10.1007/s10778-020-01031-9
  44. Free vibration of FG-GPLRC conical panel on elastic foundation vol.75, pp.1, 2020, https://doi.org/10.12989/sem.2020.75.1.001
  45. A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions vol.22, pp.2, 2011, https://doi.org/10.12989/gae.2020.22.2.119
  46. Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects vol.26, pp.8, 2020, https://doi.org/10.1007/s00542-020-04802-z
  47. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory vol.90, pp.8, 2020, https://doi.org/10.1007/s00419-020-01694-3
  48. Multi-Beams modelling for high-rise buildings subjected to static horizontal loads vol.75, pp.3, 2020, https://doi.org/10.12989/sem.2020.75.3.283
  49. Frequency, bending and buckling loads of nanobeams with different cross sections vol.9, pp.2, 2011, https://doi.org/10.12989/anr.2020.9.2.091
  50. Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder vol.36, pp.5, 2011, https://doi.org/10.12989/scs.2020.36.5.603
  51. Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation vol.12, pp.3, 2011, https://doi.org/10.24107/ijeas.790858
  52. A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2011, https://doi.org/10.1007/s11831-019-09365-5
  53. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2011, https://doi.org/10.12989/scs.2021.38.1.033
  54. Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue vol.77, pp.2, 2011, https://doi.org/10.12989/sem.2021.77.2.197
  55. Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation vol.27, pp.2, 2011, https://doi.org/10.12989/cac.2021.27.2.085
  56. Dynamic stability of rotating viscoelastic annular sector plate vol.40, pp.1, 2011, https://doi.org/10.1177/1461348419879800
  57. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2011, https://doi.org/10.12989/anr.2021.10.3.263
  58. Using orthotropic viscoelastic representative elements for C1-continuous zigzag dynamic response assessment of sandwich FG circular plates with unevenly damaged adhesive layers vol.49, pp.3, 2011, https://doi.org/10.1080/15397734.2019.1687313
  59. Analytical and numerical simulations of a pressurized functionally graded smart spherical cap vol.23, pp.5, 2011, https://doi.org/10.1177/1099636219896041
  60. Vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation and third-order shear deformation theory under thermal environment vol.27, pp.17, 2011, https://doi.org/10.1177/1077546320951663
  61. Nonlinear dynamic analysis of nonlocal composite laminated toroidal shell segments subjected to mechanical shock vol.106, pp.None, 2011, https://doi.org/10.1016/j.cnsns.2021.106105