DOI QR코드

DOI QR Code

Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes

  • Li, Rui (Department of Civil and Environmental Engineering, University of California) ;
  • Sun, L.Z. (Department of Civil and Environmental Engineering, University of California)
  • Received : 2011.01.10
  • Accepted : 2011.05.25
  • Published : 2011.09.25

Abstract

The dynamic mechanical behavior of silicone rubber reinforced with multi-walled carbon nanotubes (MWCNTs) has been investigated in this study. The MWCNT-reinforced nanocomposites are tested in compression mode through dynamic mechanical analysis (DMA). Multiple effects including MWCNT loading, testing frequency, dynamic strain amplitude, and pre-strain level are taken into consideration. Results show that, by adding 5 wt% of MWCNTs, the dynamic stiffness and damping coefficient of the silicone rubber are significantly enhanced. It is further observed that the dynamic mechanical properties of the nanocomposites are sensitive to dynamic strain amplitude but only slightly affected by pre-strains.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Bansal, A., Yang, H.C., Li, C.Z., Cho, K.W., Benicewicz, B.C., Kumar, S.K. and Schadler, L.S. (2005), "Quantitative equivalence between polymer nanocomposites and thin polymer films", Nature Mater., 4(9), 693-698. https://doi.org/10.1038/nmat1447
  2. Blighe, F.M., Blau, W.J. and Coleman, J.N. (2008), "Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels", Nanotechnology, 19(41), 7.
  3. Bokobza, L. (2009), "Mechanical, electrical and spectroscopic investigations of carbon nanotube-reinforced elastomers", Vib. Spectrosc., 51(1), 52-59. https://doi.org/10.1016/j.vibspec.2008.10.001
  4. Bokobza, L. and Belin, C. (2007), "Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes", J. Appl. Polym. Sci., 105(4), 2054-2061. https://doi.org/10.1002/app.26153
  5. Bokobza, L. and Kolodziej, M. (2006), "On the use of carbon nanotubes as reinforcing fillers for elastomeric materials", Polym. Int., 55(9), 1090-1098. https://doi.org/10.1002/pi.2064
  6. Busfield, J.J.C., Deeprasertkul, C. and Thomas, A.G. (2000), "The effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain", Polymer, 41(26), 9219-9225. https://doi.org/10.1016/S0032-3861(00)00306-2
  7. Cantournet, S., Boyce, M.C. and Tsou, A.H. (2007), "Micromechanics and macromechanics of carbon nano tube-enhanced elastomers", J. Mech. Phys. Solids, 55(6), 1321-1339. https://doi.org/10.1016/j.jmps.2006.07.010
  8. Cataldo, F., Ursini, O. and Angelini, G. (2009), "MWCNTs elastomer nanocomposite, Part 1: The addition of MWCNTs to a natural rubber-based carbon black-filled rubber compound", Fuller. Nanotub. Car. N., 17(1), 38-54. https://doi.org/10.1080/15363830802515907
  9. Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nagy, J.B., Blau, W.J. and Ferreira, M.S. (2006), "Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling", Polymer, 47(26), 8556-8561. https://doi.org/10.1016/j.polymer.2006.10.014
  10. Coleman, J.N., Khan, U., Blau, W.J. and Gun'ko, Y.K. (2006), "Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
  11. Das, A., Stockelhuber, K.W., Jurk, R., Saphiannikova, M., Fritzsche, J., Lorenz, H., Kluppel, M. and Heinrich, G. (2008), "Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrenebutadiene and butadiene rubber blends", Polymer, 49(24), 5276-5283. https://doi.org/10.1016/j.polymer.2008.09.031
  12. Ferry, J.D. (1980), Viscoelastic properties of polymers, 3rd ed., Wiley, New York.
  13. Frogley, M.D., Ravich, D. and Wagner, H.D. (2003), "Mechanical properties of carbon nanoparticle-reinforced elastomers", Compos. Sci. Technol., 63(11), 1647-1654. https://doi.org/10.1016/S0266-3538(03)00066-6
  14. Guo, Z.Q. and Sluys, L.Z. (2008), "Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading", Interact. Multiscale Mech., 1(3), 317-328. https://doi.org/10.12989/imm.2008.1.3.317
  15. Guth, E. and Gold, O. (1938), "On the hydrodynamical theory of the viscosity of suspensions", Phys. Rev., 53, 322.
  16. Heinrich, G. and Kluppel, M. (2002), "Recent advances in the theory of filler networking in elastomers", Fill. Elastom. Drug Delivery Syst., 160, 1-44. https://doi.org/10.1007/3-540-45362-8_1
  17. Heinrich, G., Kluppel, M. and Vilgis, T.A. (2002), "Reinforcement of elastomers", Curr. Opin. Solid St. M., 6(3), 195-203. https://doi.org/10.1016/S1359-0286(02)00030-X
  18. Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E. (2006), "Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview", J. Compos. Mater., 40(17), 1511-1575. https://doi.org/10.1177/0021998306067321
  19. Kim, Y.A., Hayashi, T., Endo, M., Gotoh, Y., Wada, N. and Seiyama, J. (2006), "Fabrication of aligned carbon nanotube-filled rubber composite", Scripta Materialia, 54(1), 31-35. https://doi.org/10.1016/j.scriptamat.2005.09.014
  20. Kraus, G. (1984), "Mechanical losses in carbon-black-filled rubbers", Appl. Polym. Symposia, 39, 75-92.
  21. Lion, A. (1996), "A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation", Continuum Mech. Therm., 8(3), 153-169. https://doi.org/10.1007/BF01181853
  22. Maier, P.G. and Goritz, D. (1996), "Molecular interpretation of the Payne effect", Kautschuk Gummi Kunststoffe, 49(1), 18-21.
  23. McNally, T., Potschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E.J., Brennan, G.P., Bein, D., Lemoine, P. and Quinn, J.P. (2005), "Polyethylene multiwalled carbon nanotube composites", Polymer, 46(19), 8222-8232. https://doi.org/10.1016/j.polymer.2005.06.094
  24. Medalia, A.I. (1972), "Effective degree of immobilization of rubber occluded within carbon-black aggregates", Rubber Age, 104(3), 67-&.
  25. Moniruzzaman, M. and Winey, K.I. (2006), "Polymer nanocomposites containing carbon nanotubes", Macromolecules, 39(16), 5194-5205. https://doi.org/10.1021/ma060733p
  26. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotubereinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
  27. Park, I.S., Kim, K.J., Nam, J.D., Lee, J. and Yim, W. (2007), "Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon a nanotubes as a nanofiller", Polym. Eng. Sci., 47(9), 1396-1405. https://doi.org/10.1002/pen.20833
  28. Perez, L.D., Zuluaga, M.A., Kyu, T., Mark, J.E. and Lopez, B.L. (2009), "Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites", Polym. Eng. Sci., 49(5), 866-874. https://doi.org/10.1002/pen.21247
  29. Ramanathan, T., Liu, H. and Brinson, L.C. (2005), "Functionalized SWNT/polymer nanocomposites for dramatic property improvement", J. Polym. Sci. Part B - Polym. Phys., 43(17), 2269-2279. https://doi.org/10.1002/polb.20510
  30. Sato, M. and Shima, H. (2009), "Buckling characteristics of multiwalled carbon nanotubes under external pressure", Interact. Multiscale Mech., 2(2), 209-222. https://doi.org/10.12989/imm.2009.2.2.209
  31. Schandler, L.S., Brinson, L.C. and Sawyer, W.G. (2007), "Polymer nanocomposites: a small part of the story", Jom, 59(3), 53-60.
  32. Spitalsky, Z., Tasis, D., Papagelisb, K. and Galiotis, C. (2010), "Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties", Prog. Polym. Sci., 35(3), 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  33. Sternstein, S.S. and Zhu, A.J. (2002), "Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior", Macromolecules, 35(19), 7262-7273. https://doi.org/10.1021/ma020482u
  34. Suhr, J., Koratkar, N., Keblinski, P. and Ajayan, P. (2005), "Viscoelasticity in carbon nanotube composites", Nature Mater., 4(2), 134-137. https://doi.org/10.1038/nmat1293
  35. Suhr, J. and Koratkar, N.A. (2008), "Energy dissipation in carbon nanotube composites: a review", J. Mater. Sci., 43(13), 4370-4382. https://doi.org/10.1007/s10853-007-2440-x
  36. Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  37. Unnikrishnan, V.U., Reddy, J.N., Banerjee, D. and Rostam-Abadi, F. (2008), "Thermal characteristics of defective carbon nanotube-polymer nanocomposites", Interact. Multiscale Mech., 1(4), 397-409. https://doi.org/10.12989/imm.2008.1.4.397
  38. Wang, M.J. (1999), "The role of filler networking in dynamic properties of filled rubber", Rubber Chem. Technol., 72(2), 430-448. https://doi.org/10.5254/1.3538812
  39. Wolff, S. and Donnet, J.B. (1990). "Characterization of fillers in vulcanizates according to the einstein-guth-gold equation", Rubber Chem. Technol., 63(1), 32-45. https://doi.org/10.5254/1.3538240
  40. Xie, X.L., Mai, Y.W. and Zhou, X.P. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Mater. Sci. Eng. R - Reports, 49(4), 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  41. Zhou, X., Shin, E., Wang, K.W. and Bakis, C.E. (2004), "Interfacial damping characteristics of carbon nanotubebased composites", Compos. Sci. Technol., 64(15), 2425-2437. https://doi.org/10.1016/j.compscitech.2004.06.001

Cited by

  1. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
  2. Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content vol.104, 2016, https://doi.org/10.1016/j.matdes.2016.04.099
  3. ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339
  4. Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer vol.795, 2017, https://doi.org/10.1088/1742-6596/795/1/012074
  5. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271
  6. A micromechanics-based viscoelastic model for nanocomposites with imperfect interface vol.22, pp.7, 2013, https://doi.org/10.1177/1056789512469890
  7. Carbon nanotubes-polymer nanocomposites for controlled heating materials vol.133, pp.47, 2016, https://doi.org/10.1002/app.44194
  8. Nanocarbon Reinforced Rubber Nanocomposites: Detailed Insights about Mechanical, Dynamical Mechanical Properties, Payne, and Mullin Effects vol.8, pp.11, 2018, https://doi.org/10.3390/nano8110945