References
- Babak, A.V. (1982), "Evaluating the crack resistance of tungsten at high temperatures", Strength Mater., 14(10), 1389-1391. https://doi.org/10.1007/BF00770141
- Bazylev, B.N., Janeschitz, G., Landman, I.S. and Pestchanyi, S.E. (2005), "Erosion of tungsten armor after multiple intense transient events in ITER", J. Nucl. Mater., 337-339, 766-770.
- Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Landman, I., Makhlaj, V.A., Pestchanyi, S. and Tereshin, V.I. (2009), "Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs", J. Nucl. Mater., 386, 127-131.
- Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Landman, I.S., Makhlaj, V.A., Marchenko, A.K., Solyakov, D.G., Tereshin, V.I., Trubchaninov, S.A. and Tsarenko, A.V. (2005), "Tungsten erosion under plasma heat loads typical for ITER type-I LEMs and disruptions", J. Nucl. Mater., 337-339, 707-711.
- Iwakiri, H., Yasunaga, K., Morishita, K. and Yoshida, N. (2000), "Microstructure evolution in tungsten during low-energy helium ion irradiation", J. Nucl. Mater., 283, 1134-1138.
- Kajita, S., Ohno, N., Sakaguchi, W. and Takagi, M. (2009), "Visualized blow-off from helium irradiated tungsten in response to ELM-like heat load", Plasma Fusion Res., 4,4. https://doi.org/10.1585/pfr.4.004
- Kim, C.I. (2011), "An analysis of an elastic solid incorporating a crack under then influences of surface effects in plane and anti-plane deformations", Interact. Multiscale Mech., 4(2), 123-137. https://doi.org/10.12989/imm.2011.4.2.123
- Landau, L.D. and Lifshitz, E.M. (1965), The theory of elasticity, Nauka, Moscow.
- Naujoks, D. (2006), Plasma-material interaction in controlled fusion, Springer.
- Ohno, N., Kajita, S., Dai, Nishijima, and Takamura, S. (2007), "Surface modification at tungsten and tungsten coated graphite due to low energy and high fluence plasma and laser pulse irradiation", J. Nucl. Mater., 363, 1153-1159.
- Pestchanyi, S.E. and Linke, J. (2007), "Simulation of cracks in tungsten under ITER specific transient heat loads", Fusion Eng. Des., 82(15-24), 1657-1663. https://doi.org/10.1016/j.fusengdes.2007.01.028
- Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44. https://doi.org/10.12989/imm.2009.2.1.031
- Tokunaga, K. (2003), "Surface morphology and helium retention on tungsten exposed to low energy and high flux helium plasma", J. Nucl. Mater., 313-316, 92-96. https://doi.org/10.1016/S0022-3115(02)01362-4
- Tokunaga, K., Yoshikawa, O., Makise, K. and Yoshida, N. (2002), "Effects of helium irradiation on high heat load properties of tungsten", J. Nucl. Mater., 307, 130-134.
- White, J.L. (1959), Physicochemical measurements at high temperatures, Ed. J O'M Bockris J L White and J D Mackenzie, London, Butterworths.
- Xu, Q., Yoshida, N. and Yoshiie, T. (2007), "Accumulation of helium in tungsten irradiated by helium and neutrons", J. Nucl. Mater., 367-370, 806-811. https://doi.org/10.1016/j.jnucmat.2007.03.078
- Zhitlukhin, A., Klimov, N., Landman, I., Linke, J., Loarte, A., Merola, M., Podkovyrov, V., Federici, G., Bazylev, B., Pestchanyi, S., Safronov, V., Hirai, T., Maynashev, V., Levashov, V. and Muzichenko, A. (2007), "Effects of ELMs on ITER divertor armour materials", J. Nucl. Mater., 363-365, 301-307. https://doi.org/10.1016/j.jnucmat.2007.01.027
Cited by
- Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials vol.442, pp.1-3, 2013, https://doi.org/10.1016/j.jnucmat.2013.02.074
- A numerical tool for thermo-mechanical analysis of multilayer stepped structures vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.757