DOI QR코드

DOI QR Code

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer (Department of Mechanical & Aerospace Engineering, University of California at Los Angeles (UCLA)) ;
  • Ghoniem, Nasr M. (Department of Mechanical & Aerospace Engineering, University of California at Los Angeles (UCLA))
  • Received : 2010.12.13
  • Accepted : 2011.04.14
  • Published : 2011.09.25

Abstract

International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Keywords

References

  1. Babak, A.V. (1982), "Evaluating the crack resistance of tungsten at high temperatures", Strength Mater., 14(10), 1389-1391. https://doi.org/10.1007/BF00770141
  2. Bazylev, B.N., Janeschitz, G., Landman, I.S. and Pestchanyi, S.E. (2005), "Erosion of tungsten armor after multiple intense transient events in ITER", J. Nucl. Mater., 337-339, 766-770.
  3. Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Landman, I., Makhlaj, V.A., Pestchanyi, S. and Tereshin, V.I. (2009), "Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs", J. Nucl. Mater., 386, 127-131.
  4. Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Landman, I.S., Makhlaj, V.A., Marchenko, A.K., Solyakov, D.G., Tereshin, V.I., Trubchaninov, S.A. and Tsarenko, A.V. (2005), "Tungsten erosion under plasma heat loads typical for ITER type-I LEMs and disruptions", J. Nucl. Mater., 337-339, 707-711.
  5. Iwakiri, H., Yasunaga, K., Morishita, K. and Yoshida, N. (2000), "Microstructure evolution in tungsten during low-energy helium ion irradiation", J. Nucl. Mater., 283, 1134-1138.
  6. Kajita, S., Ohno, N., Sakaguchi, W. and Takagi, M. (2009), "Visualized blow-off from helium irradiated tungsten in response to ELM-like heat load", Plasma Fusion Res., 4,4. https://doi.org/10.1585/pfr.4.004
  7. Kim, C.I. (2011), "An analysis of an elastic solid incorporating a crack under then influences of surface effects in plane and anti-plane deformations", Interact. Multiscale Mech., 4(2), 123-137. https://doi.org/10.12989/imm.2011.4.2.123
  8. Landau, L.D. and Lifshitz, E.M. (1965), The theory of elasticity, Nauka, Moscow.
  9. Naujoks, D. (2006), Plasma-material interaction in controlled fusion, Springer.
  10. Ohno, N., Kajita, S., Dai, Nishijima, and Takamura, S. (2007), "Surface modification at tungsten and tungsten coated graphite due to low energy and high fluence plasma and laser pulse irradiation", J. Nucl. Mater., 363, 1153-1159.
  11. Pestchanyi, S.E. and Linke, J. (2007), "Simulation of cracks in tungsten under ITER specific transient heat loads", Fusion Eng. Des., 82(15-24), 1657-1663. https://doi.org/10.1016/j.fusengdes.2007.01.028
  12. Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44. https://doi.org/10.12989/imm.2009.2.1.031
  13. Tokunaga, K. (2003), "Surface morphology and helium retention on tungsten exposed to low energy and high flux helium plasma", J. Nucl. Mater., 313-316, 92-96. https://doi.org/10.1016/S0022-3115(02)01362-4
  14. Tokunaga, K., Yoshikawa, O., Makise, K. and Yoshida, N. (2002), "Effects of helium irradiation on high heat load properties of tungsten", J. Nucl. Mater., 307, 130-134.
  15. White, J.L. (1959), Physicochemical measurements at high temperatures, Ed. J O'M Bockris J L White and J D Mackenzie, London, Butterworths.
  16. Xu, Q., Yoshida, N. and Yoshiie, T. (2007), "Accumulation of helium in tungsten irradiated by helium and neutrons", J. Nucl. Mater., 367-370, 806-811. https://doi.org/10.1016/j.jnucmat.2007.03.078
  17. Zhitlukhin, A., Klimov, N., Landman, I., Linke, J., Loarte, A., Merola, M., Podkovyrov, V., Federici, G., Bazylev, B., Pestchanyi, S., Safronov, V., Hirai, T., Maynashev, V., Levashov, V. and Muzichenko, A. (2007), "Effects of ELMs on ITER divertor armour materials", J. Nucl. Mater., 363-365, 301-307. https://doi.org/10.1016/j.jnucmat.2007.01.027

Cited by

  1. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials vol.442, pp.1-3, 2013, https://doi.org/10.1016/j.jnucmat.2013.02.074
  2. A numerical tool for thermo-mechanical analysis of multilayer stepped structures vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.757