DOI QR코드

DOI QR Code

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K. (Department of Civil and Environmental Engineering, The University of Western Ontario London) ;
  • Shang, J.Q. (Department of Civil and Environmental Engineering, The University of Western Ontario London)
  • Received : 2010.07.07
  • Accepted : 2011.05.26
  • Published : 2011.06.25

Abstract

The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

Keywords

References

  1. Abu-Hassanein, Z.S., Benson, C.H. and Blotz, L.R. (1996), "Electrical resistivity of compacted clays", J. Geotech. Eng., 122(5), 397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 54-62.
  3. Arulanandan, K. and Muraleetharan, K.K. (1988), "Level ground soil-liquefaction analysis using in situ properties: I", J. Geotech. Eng., 114(7), 753-770. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(753)
  4. ASTM (2006), "Standard test method for field measurement of soil resistivity using the Wenner four-electrode method", G 57-06, ASTM, West Conshohocken, Pa.
  5. ASTM (2007), "Standard test method for laboratory compaction characteristics of soil using standard effort", D 689-07, ASTM, West Conshohocken, Pa.
  6. Auerswald, K., Simon, S. and Stanjek, H. (2001), "Influence of soil properties on electrical conductivity under humid water regimes", Soil Sci., 166(6), 382-392. https://doi.org/10.1097/00010694-200106000-00003
  7. Bennett, R.H., Li, H., Lambert, D.N., Fischer, K.M. and Walter, D.J. (1990), "In situ porosity and permeability of selected carbonate sediment: Great Bahama Bank Part 1: Measurement", Mar. Georesour. Geotech., 9(1), 1- 28. https://doi.org/10.1080/10641199009388227
  8. Biella, G., Lozej, A. and Tabaco, L. (1983), "Experimental study of some hydrogeophysical properties of unconsolidated porous media", Ground Water, 21(6), 741-751. https://doi.org/10.1111/j.1745-6584.1983.tb01945.x
  9. Boyce, R.E. (1968), "Electrical resistivity of modern marine sediments from the Bering Sea", J. Geophys. Res., 73(14), 4759-4766. https://doi.org/10.1029/JB073i014p04759
  10. Bryson, L.S. and Bathe, A. (2009), "Determination of selected geotechnical properties of soil using electrical conductivity testing", Geotech. Test. J., 32(3), 252-261.
  11. Erchul, R.A. and Gluarte, R.C. (1982), "Electrical resistivity used to measure liquefaction of sand", J. Geotech. Eng., 108(GT5), 778-782.
  12. Friedman, S.P. and Robinson, D.A. (2002), "Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media", Water Resour. Res., 38(11), 1236-1235.
  13. Gorman, T. and Kelly, W.E. (1990), "Electrical-hydraulic properties of unsaturated Ottawa sands", J. Hydrol., 118(1-4), 1-18. https://doi.org/10.1016/0022-1694(90)90247-U
  14. Hamed, Y., Persson, M. and Berndtsson, R. (2003), "Soil solution electrical conductivity measurements using different dielectric techniques", Soil Sci. Soc. Am. J., 67, 1071-1078. https://doi.org/10.2136/sssaj2003.1071
  15. Hulbert, M.H., Bennett, R.H. and Lambert, D.N. (1982), "Seabed geotechnical parameters from electrical conductivity measurements", Geo-Mar. Lett., 2(3-4), 219-222. https://doi.org/10.1007/BF02462767
  16. Jackson, P.D. (1975), "An electrical resistivity method for evaluating the in-situ porosity of clean marine sands", Mar. Geotechnol., 1(2), 91-115. https://doi.org/10.1080/10641197509388156
  17. Jackson, P.D., Smith, D.T. and Stanford, P.N (1978), "Resistivity-porosity-particle shape relationships for marine sands", Geophysics, 43(6), 1250-1268. https://doi.org/10.1190/1.1440891
  18. Jones, P.H. and Buford, T.B. (1951), "Electric logging applied to ground-water exploration", Geophysics, 16(1), 115-139. https://doi.org/10.1190/1.1437640
  19. Kachanoski, R.G., Rringle, E. and Ward, A. (1992), "Field measurement of solute travel times using time domain reflectometry", Soil Sci. Soc. Am. J., 56, 47-52. https://doi.org/10.2136/sssaj1992.03615995005600010006x
  20. Kalinski, R.J. and Kelly, W.E. (1993), "Estimating water content of soils from electrical resistivity", Geotech. Test. J., 16(3), 323-329. https://doi.org/10.1520/GTJ10053J
  21. Kalinski, R.J. and Kelly, W.E. (1994), "Electrical-resistivity measurements for evaluating compacted-soil liners", J. Geotech. Eng., 120(2), 451-457. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(451)
  22. Kaya, A. and Fang, H. (1997), "Identification of contaminated soils by dielectric constant and electrical conductivity", J. Geotech. Eng., 123(2), 169-177.
  23. Keller, G.V. and Frischknecht, F.L. (1966), Electrical methods in geophysical prospecting, Pergamon Press, New York.
  24. Kezdi, A. (1974), Handbook of soil mechanics, Vol.1, Elsevier, Amsterdam.
  25. Kim, D.C. and Manghnani, M.H. (1992), "Influence of diagenesis on the electrical resistivity and the formation factor of deep-sea carbonate sediments", Geo-Mar. Lett., 12(1), 14-18. https://doi.org/10.1007/BF02092103
  26. Lavoie, D., Mozely, E., Corwin, R., Lamber, D. and Valent, P. (1988), "The use of a towed, direct-current, electrical resistivity array for the classification of marine sediments", Oceans 88 Conference, Baltimore, 397- 404.
  27. Lovell, M.A. (1985), "Thermal conductivity and permeability assessment by electrical resistivity measurement in marine sediments", Mar. Geotechnol., 6(2), 205-240. https://doi.org/10.1080/10641198509388187
  28. McCarter, W.J. (1984), "The electrical resistivity characteristics of compacted clays", Geotechnique, 34(2), 263- 267. https://doi.org/10.1680/geot.1984.34.2.263
  29. McCarter, W.J. and Desmazes, P. (1997), "Soil characterization using electrical measurements", Geotechnique, 47(1), 179-183. https://doi.org/10.1680/geot.1997.47.1.179
  30. Mohamedelhassan, E. and Shang, J.Q. (2003), "Electrokinetics-generated pore fluid and ionic transport in an offshore calcareous soil", Can. Geotech. J., 40(6), 1185-1199. https://doi.org/10.1139/t03-060
  31. Nadler, A. and Frenkel, H. (1980), "Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method", Soil Sci. Soc. Am. J., 44, 1216-1221. https://doi.org/10.2136/sssaj1980.03615995004400060017x
  32. Nichol, C., Beckie, R. and Smith, L. (2002), "Evaluation of uncoated and coated time domain reflectometry probes for high electrical conductivity system", Soil Sci. Soc. Am. J., 66, 1454-1465. https://doi.org/10.2136/sssaj2002.1454
  33. Rhoades, J.D., Manteghi, N.A., Shouse, P.J. and Alves, W.J. (1989), "Soil electrical conductivity and soil salinity: new formulations and calibrations", Soil Sci. Soc. Am. J., 53, 433-439. https://doi.org/10.2136/sssaj1989.03615995005300020020x
  34. Rhoades, J.D., Raats, R.A.C. and Prather, R.J. (1976), "Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity", Soil Sci. Soc. Am. J., 40, 651-655. https://doi.org/10.2136/sssaj1976.03615995004000050017x
  35. Rinaldi, V.A. and Cuestas, G.A. (2002), "Ohmic conductivity of a compacted silty clay", J. Geotech. Geoenviron. Eng., 128(10), 824-835. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  36. Rittirong, A., Douglas, R.S., Shang, J.Q. and Lee, E.C. (2008), "Electrokinetic improvement of soft clay using electrical vertical drains", Geosynth. Int., 15(5), 369-381. https://doi.org/10.1680/gein.2008.15.5.369
  37. Salem, H.S. (2001), "Determination of porosity, formation resistivity factor, Archie cementation factor, and pore geometry factor for a glacial aquifer", Energ. Source. Part A, 23(6), 589-596. https://doi.org/10.1080/00908310152125238
  38. Salem, H.S. and Chilingarian, G.V. (2000), "Influence of porosity and direction of flow on tortuosity in unconsolidated porous media", Energ. Source. Part A, 22(3), 207-213. https://doi.org/10.1080/00908310050013992
  39. Scholte, J.W., Shang, J.Q. and Rowe, R.K. (2002), "Improved complex permittivity measurement and data processing technique for soil-water systems", Geotech. Test. J., 25(2), 187-198. https://doi.org/10.1520/GTJ11362J
  40. Schwartz, L.M. and Kimminau, S. (1987), "Analysis of electrical conduction in the grain consolidation model", Geophysics, 52(10), 1402-1411. https://doi.org/10.1190/1.1442252
  41. Shah, P.H. and Singh, D.N. (2005), "Generalized Archie's law for estimation of soil electrical conductivity", J. ASTM Int., 2(5), 1-20. https://doi.org/10.1520/JAI12938
  42. Shang, J.Q., Lo, K.Y. and Inculet, I.I. (1993), "Polarization and conduction of clay-water-electrolyte systems", J. Geotech. Eng., 121(3), 243-248.
  43. Shang, J.Q., Tang, Q.H., and Xu, Y.Q. (2009), "Consolidation of marine clay using electrical vertical drains", Geomech. Eng., 1(4), 275-289. https://doi.org/10.12989/gae.2009.1.4.275
  44. U.S. Salinity Laboratory Staff (1954), Diagnosis and improvement of saline and alkali soils, USDA Handbook 60, U.S. Government Print Office, Washington D.C.
  45. Vanclooster, M, Mallants, D., Vanderborght, J., Diels, J., Feyen, J. and van Orshoven, J. (1995), "Monitoring solute transport in a multi-layered sandy lysimeter using time domain reflectometry", Soil Sci. Soc. Am. J., 59, 337-344. https://doi.org/10.2136/sssaj1995.03615995005900020010x
  46. Walsh, J.B. and Brace, W.F. (1984), "The effect pressure on porosity and the transport properties of rock", J. Geophys. Res., 89(B11), 9425-9431. https://doi.org/10.1029/JB089iB11p09425
  47. Wheatcroft, R.A. (2002), "In situ measurements of near-surface porosity in shallow-water marine sands", IEEE J. Oceanic Eng., 27(3), 561-570. https://doi.org/10.1109/JOE.2002.1040938
  48. Winsauer, W.O., Shearin, H.M., Masson, P.H. and Williams, M. (1952), "Resistivity of brine-saturated sands in relation to pore geometry", Am. Assoc. Pet. Geol. Bull., 36(2), 253-277.
  49. Wyllie, M.R.J. and Gregory, A.R. (1953), "Formation factors of unconsolidated porous media: influence of particle shape and effect of cementation", Trans. Am. Inst. Min. Metall. Pet. Eng., 198, 103-110.

Cited by

  1. Effect of electrochemical treatment on consolidation of soft clay vol.15, pp.4, 2011, https://doi.org/10.12989/gae.2018.15.4.957
  2. An apparatus for measuring water content of unsaturated soil based on the van der Pauw principle vol.13, pp.6, 2020, https://doi.org/10.1007/s12517-020-5248-5