초록
특정 제품이나 서비스에 대한 네티즌의 의견들은 고객들의 구매 행위에서의 참고대상일 뿐만 아니라 기업 입장에서도 마케팅이나 경영전략을 수립하기 위한 중요한 자료가 될 수 있기 때문에 온라인 고객리뷰를 분석하는 것은 매우 중요하다. 본 논문에서는 비정형(unformatted) 데이터형인 자연어(natural language) 형태로 웹상에 게시된 고객 의견들을 분석할 수 있는 새로운 오피년마이닝 기법을 제안한다. 기존 데이터마이닝 기법 중의 하나인 연관규칙탐사 기법을 수정하여 오피년마이닝 과정에 보다 효율적이고 효과적으로 적용하기 위한 방안을 고찰하고 이를 기반으로 실제 시스템을 설계하고 구현하였다.
For both customers and companies, it is very important to analyze online customer reviews, which consist of small documents that include opinions or experiences about products or services, because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we propose the association model for the opinion mining which can analyze customer opinions posted on web. The association model is to modify the association rules mining model in data mining in order to apply efficiently and effectively the association mining techniques to the opinion mining. We designed and implemented the opinion mining systems based on the modified association model and the grouping idea which would enable it to generate significant rules more.