References
- Nakazumi, H.; Kobara, Y.; Kitao, T. J. Heterocyclic Chem. 1992, 29, 135. https://doi.org/10.1002/jhet.5570290124
- Nussbaumer, P.; Lehr, P.; Billich, A. J. Med. Chem. 2002, 45, 4310. https://doi.org/10.1021/jm020878w
- Nussbaumer, P.; Winiski, A. P.; Billich, A. J. Med. Chem. 2003, 46, 5091. https://doi.org/10.1021/jm030926s
- Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A. J. Med. Chem. 2004, 47, 4268. https://doi.org/10.1021/jm0407916
- Pal, M.; Parasuraman, K.; Subramanian, V.; Dakarapu, R.; Yeleswarapu, K. R. Tetrahedron Lett. 2004, 45, 2305. https://doi.org/10.1016/j.tetlet.2004.01.113
- Pal, M.; Dakarapu, R.; Parasuraman, K.; Subramanian, V.; Yeleswarapu, K. R. J. Org. Chem. 2005, 70, 7179. https://doi.org/10.1021/jo050828+
- Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643. https://doi.org/10.1021/jm00205a010
- Nakazumi, H.; Watanabe, S.; Kitaguchi, T.; Kitao, T. Bull. Chem. Soc. Jpn. 1990, 63, 847. https://doi.org/10.1246/bcsj.63.847
- Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K.-H. J. Med. Chem. 1996, 39, 1975. https://doi.org/10.1021/jm960008c
- Dekermendjian, K.; Kahnberg, P.; Witt, M.-R.; Sterner, O.; Nielsen, M.; Liljefors, T. J. Med. Chem. 1999, 42, 4343. https://doi.org/10.1021/jm991010h
- Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45, 4611. https://doi.org/10.1021/jo01311a013
- Kumar, P.; Rao, A. T.; Pandey, B. J. Chem. Soc., Chem. Commun. 1992, 1580.
- Kumar, P.; Rao, A. T.; Pandey, B. Synth. Commun. 1994, 24, 3297. https://doi.org/10.1080/00397919408010253
- Kumar, P.; Bodas, M. S. Tetrahedron 2001, 57, 9755. https://doi.org/10.1016/S0040-4020(01)00977-2
- Dhanak, D.; Keenan, R. M.; Burton, G.; Kaura, A.; Darcy, M. G.; Shah, D. H.; Ridgers, L. H.; Breen, A.; Lavery, P.; Tew, D. G.; West, A. Bioorg. & Med. Chem. Lett. 1998, 8, 3677. https://doi.org/10.1016/S0960-894X(98)00666-0
- French, K. L.; Angel, A. J.; Williams, A. R.; Hurst, D. R.; Beam, C. F. J. Heterocyclic Chem. 1998, 35, 45. https://doi.org/10.1002/jhet.5570350109
- Angel, A. J.; Finefrock, A. E.; French, K. L.; Hurst, D. R.; Williams, A. R.; Rampey, M. E.; Studer-Martinez, S. L.; Beam, C. F. Can. J. Chem. 1999, 77, 94. https://doi.org/10.1139/v98-216
- Taylor, A. W.; Dean, D. K. Tetrahedron Lett. 1988, 29, 1845.
- Kataoka, T.; Watanabe, S.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M. Bioorg. & Med. Chem. 2004, 12, 2397. https://doi.org/10.1016/j.bmc.2004.02.002
- Cui, D.-M.; Kawamura, M.; Shimada, S.; Hayashi, T.; Tanaka, M. Tetrahedron Lett. 2003, 44, 4007. https://doi.org/10.1016/S0040-4039(03)00855-4
- Somogyi, L. Synth. Commun. 1999, 29, 1857. https://doi.org/10.1080/00397919908086175
- Konieczny, M. T.; Horowska, B.; Kunikowski, A.; Konopa, J.; Wierzba, K.; Yamada, Y.; Asao, T. J. Org. Chem. 1999, 64, 359. https://doi.org/10.1021/jo980586w
- Somogyi, L. Can. J. Chem. 2001, 79, 1159. https://doi.org/10.1139/v01-096
- Somogyi, L. J. Heterocyclic Chem. 2009, 46, 399. https://doi.org/10.1002/jhet.25
- Willy, B.; Muller, T. J. J. Synlett 2009, 1255.
- Fuchs, F. C.; Eller, G. A.; Holzer, W. Molecules 2009, 14, 3814. https://doi.org/10.3390/molecules14093814
- Lee, J. I. Bull. Korean Chem. Soc. 2008, 29, 1263. https://doi.org/10.5012/bkcs.2008.29.6.1263
- Lee, J. I. Bull. Korean Chem. Soc. 2009, 30, 710. https://doi.org/10.5012/bkcs.2009.30.3.710
- Strandtmann, M.; Klutchko, S.; Cohen, M. P.; Shavel, J. J. Heterocyclic Chem. 1972, 9, 171. https://doi.org/10.1002/jhet.5570090137
- Topolski, M. J. Org. Chem. 1995, 60, 5588. https://doi.org/10.1021/jo00122a046
Cited by
- ChemInform Abstract: A Practical Synthesis of Thioflavones (VI) and Heterocyclic Analogues by Intramolecular Rearrangement of S-2-Acetophenyl Benzothioates (III) as a Key Step. vol.42, pp.35, 2011, https://doi.org/10.1002/chin.201135150
- An Efficient Synthesis of Heterocyclic Analogues of Thioflavones from Haloheteroaromatic Acids vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1375
- 3′,4′-Dimethoxythioflavone induces endothelium-dependent vasorelaxation through activation of epidermal growth factor receptor vol.386, pp.4, 2013, https://doi.org/10.1007/s00210-012-0818-z
- Practical and Versatile Synthesis of Thioflavones from 2-Bromobenzoyl Chlorides vol.59, pp.3, 2015, https://doi.org/10.5012/jkcs.2015.59.3.253
- Synthetic quinolone signal analogues inhibiting the virulence factor elastase of Pseudomonas aeruginosa vol.52, pp.92, 2016, https://doi.org/10.1039/C6CC06295D
- Novel Synthesis of Thioaurones by the Regioselective Cyclization of 1-(2-Benzylthio)phenyl-3-phenyl-2-propyn-1-ones Derived from Thiosalicylic Acid vol.40, pp.1, 2018, https://doi.org/10.1002/bkcs.11637
- A Convenient Synthesis of 2-Arylthiochromen-4-ones (Thioflavones) by Iodine-Mediated Cyclization of 3-Aryl-1-[2-(1,1-dimethylethylsulfanyl)phenyl]prop-2-en-1-ones vol.85, pp.8, 2011, https://doi.org/10.3987/com-12-12508
- Synthesis of Substituted 4H-Thiochromen-4-imines via Copper-Catalyzed Cyclization Cascades of o-Bromobenzothioamides with Terminal Alkynes vol.83, pp.16, 2011, https://doi.org/10.1021/acs.joc.8b01180
- Competitive cascade cyclization of 2′-tosyloxychalcones: An easy access to thioflavones and thioaurones vol.50, pp.15, 2011, https://doi.org/10.1080/00397911.2020.1775852
- Novel Synthesis of Thioflavones and Their Pyridyl Analogs from 2-Mercaptobenzoic(nicotinic) Acid vol.65, pp.2, 2011, https://doi.org/10.5012/jkcs.2021.65.2.166
- Synthesis of 2-Aryl-4H-thiochromen-4-one Derivatives via a Cross-Coupling Reaction vol.6, pp.22, 2011, https://doi.org/10.1021/acsomega.1c01778