DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate

  • Choi, Song-Hee (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Seong, Mi-Hye (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin-Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • 투고 : 2011.01.29
  • 심사 : 2011.02.15
  • 발행 : 2011.04.20

초록

The specific rates of solvolysis of phenyl fluorothionoformate (PhOCSF, 1) have been determined in 22 pure and binary solvents at $10.0^{\circ}C$. The extended Grunwald-Winstein equation has been applied to the specific rates of solvolysis of 1 over the full range of solvents. The sensitivities (l = $1.32{\pm}0.13$ and m = $0.39{\pm}0.08$) toward the changes in solvent nucleophilicity and solvent ionizing power, and the $k_F/k_{Cl}$ values are similar to those previously observed for solvolyses of acyl haloformate esters, consistent with the addition step of an additionelimination pathway being rate-determining. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. The results are compared with those reported earlier for phenyl chloroformate and chlorothionoformate esters and mechanistic conclusions are drawn.

키워드

참고문헌

  1. Villas-Boas, S. G.; Delicado, D. G.; Akesson, M.; Nielson, J. Anal. Biochem. 2003, 322, 134. https://doi.org/10.1016/j.ab.2003.07.018
  2. Biermann, U.; Metzger, J. O. J. Am. Chem. Soc. 2004, 126, 10319. https://doi.org/10.1021/ja048904y
  3. Matzner, M.; Kurkjy, R. P.; Cotter, R. J. Chem. Rev. 1964, 64, 645. https://doi.org/10.1021/cr60232a004
  4. Jones, J. The Chemical Synthesis of Peptides; Oxford University Press: Oxford, 1991.
  5. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  6. Kevill, D. N.; Koyoshi, F.; D’Souza, M. J. Int. J. Mol. Sci. 2007, 8, 346. https://doi.org/10.3390/i8040346
  7. Kevill, D. N.; D’Souza, M. J. Can. J. Chem. 1999, 77, 1118.
  8. Koo, I. S.; Yang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 577.
  9. An, S. K.; Yang, J. S.; Cho, J. M.; Yang, K.; Lee, P. L.; Bentley, T. W.; Lee, I.; Koo, I. S. Bull. Korean Chem. Soc. 2002, 23, 1445. https://doi.org/10.5012/bkcs.2002.23.10.1445
  10. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  11. Fainberg, A. H.; Winstein, S. J. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
  12. Well, P. R. Chem. Rev. 1963, 63, 171. https://doi.org/10.1021/cr60222a005
  13. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  14. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  15. Kevill, D. N.; D’Souza, M. J. J. Chem. Res., Synop. 1993, 174.
  16. Lomas, J. S.; D’Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  17. Schleyer, P. v. R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
  18. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  19. Kevill, D. N. In Advances in Quantitative Structure-Property Relationship; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115.
  20. Harris, J. M.; Shafer, S. G.; Moffatt, J. R.; Becker, A. R. J. Am. Chem. Soc. 1979, 101, 3295. https://doi.org/10.1021/ja00506a026
  21. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin Trans. 2 1980, 1244.
  22. Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 246. https://doi.org/10.1021/ja01097a520
  23. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470. https://doi.org/10.1021/ja00204a021
  24. Wiberg, K. B.; Hadad, C. M.; Rablen, P. R.; Cioslowski, J. J. Am. Chem. Soc. 1992, 114, 8644. https://doi.org/10.1021/ja00048a044
  25. Wiberg, K. B.; Rablen, P. R. J. Org. Chem. 1998, 63, 3722. https://doi.org/10.1021/jo980463b
  26. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  27. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240.
  28. Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 2408. https://doi.org/10.5012/bkcs.2009.30.10.2408
  29. Seong, M. H.; Kyong, J. B.; Lee, Y. H.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 929. https://doi.org/10.3390/ijms10030929
  30. Lee, Y. W.; Seong, M. H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 3366. https://doi.org/10.5012/bkcs.2010.31.11.3366
  31. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  32. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  33. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283.
  34. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1083.
  35. D’Souza, M. J.; Hailey, S. M.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2253. https://doi.org/10.3390/ijms11052253
  36. D’Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  37. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150.
  38. D’Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
  39. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  40. D’Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12
  41. Elliott, B. U. S. Patent 4754072, 1988.
  42. Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258. https://doi.org/10.1021/jo00027a046

피인용 문헌

  1. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  2. -Chlorophenyl Chlorothionoformate Esters vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/248534
  3. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
  4. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2011, https://doi.org/10.5012/bkcs.2012.33.9.2971