DOI QR코드

DOI QR Code

Operational and Thermal Characteristics of a Microchip Yb:YAG Laser

마이크로 칩 Yb:YAG 레이저의 동작 및 열적 특성

  • Moon, Hee-Jong (Department of Optical Engineering, Sejong University) ;
  • Hong, Sung-Ki (Quantum Optics Division, Korea Atomic Energy Research Institute) ;
  • Lim, Chang-Hwan (Quantum Optics Division, Korea Atomic Energy Research Institute)
  • 문희종 (세종대학교 광전자공학과) ;
  • 홍성기 (한국원자력연구원 양자광학기술개발팀) ;
  • 임창환 (한국원자력연구원 양자광학기술개발팀)
  • Received : 2011.01.31
  • Accepted : 2011.03.30
  • Published : 2011.04.25

Abstract

Operational and thermal characteristics of a thin disk Yb:YAG crystal with a thickness of 0.8 mm were studied using as a pumping source a fiber-coupled 930 nm laser diode. The heat generated in the crystal was dissipated by placing both surfaces in contact with copper plates with central hole, and the dependence of the temperature change in the illuminated spot on hole size was investigated by measuring the spectral change of the lasing peaks. The slope efficiency and optical-to-optical efficiency with respect to the LD pump power were as high as 42.2% and 34.8%, respectively. The temperature at the illuminated spot increased with diode current and with increasing hole size of the copper plate. When the hole size considerably exceeded the crystal thickness, the temperature rise deviated from the linear increase at high pump power.

본 논문에서는 930 nm 대역 광섬유 결합 레이저 다이오드 여기광을 0.8 mm 두께의 얇은 디스크형 Yb:YAG 결정에 조사하여 레이저 발진 특성을 연구하였다. 구멍이 있는 구리판 사이에 레이저 결정을 고정시켜 발생된 열을 접촉 냉각시키는 구조를 채택하였고, 구리판 구멍 크기에 따른 조사 지점의 온도 변화를 발진 피크 스펙트럼 이동으로부터 조사하였다. 광섬유 결합 LD 여기 광에 대해 발진 레이저 출력은 기울기 효율 42.2%, 광변환 효율 34.8%로 높게 구현되었다. LD 여기 전류 및 구리판 구멍 크기가 증가함에 따라 여기광이 조사된 지점의 온도가 증가하였다. 구리판 구멍 크기가 결정 두께에 비해 상당히 큰 경우, 높은 여기광의 세기에서는 온도 상승이 선형 변화로부터 벗어남을 확인하였다.

Keywords

References

  1. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power $1-{\mu}m$ performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998). https://doi.org/10.1109/3.720241
  2. P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30 at% Yb:YAG and its laser performance,” J. Crystal Growth 216, 348-351 (2000). https://doi.org/10.1016/S0022-0248(00)00418-8
  3. T. Dascalu, “Edge-pump high power microchip Yb:YAG Laser,” Romanian Reports in Phys. 60, 977-994 (2008).
  4. C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron. 36, 745-758 (2004). https://doi.org/10.1023/B:OQEL.0000039616.43468.fc
  5. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Comm. 123, 385-393 (1995).
  6. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the $Yb^{3+}$ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975-1979 (2003). https://doi.org/10.1364/JOSAB.20.001975
  7. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of $Yb_3Al_5O_{12}$ (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135-144 (2001). https://doi.org/10.1109/3.892735
  8. X. Wang, X. Xu, X. Zeng, Z. Zhao, B. Jiang, X. He, and J. Xu, “Effects of Yb concentration on the spectroscopic properties of $Yb:Y_3Al_5O_{12}$,” Spectrochimica Acta Part A 63, 49-54 (2006). https://doi.org/10.1016/j.saa.2005.04.014
  9. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635-638 (2005). https://doi.org/10.1007/s00340-005-1779-4
  10. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154-2156 (2004). https://doi.org/10.1364/OL.29.002154
  11. P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, “Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser,” Opt. Comm. 174, 467-470 (2000). https://doi.org/10.1016/S0030-4018(99)00686-0
  12. J. T. Verdeyen, Laser Electronics (Prentice Hall, Englewood Cliffs, USA, 1995), Chapter 6.
  13. O. L. Antipov, E. A. Anashkina, and K. A. Fedorova, “Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs,” Quantum Electron. 39, 1131-1136 (2009). https://doi.org/10.1070/QE2009v039n12ABEH014160