DOI QR코드

DOI QR Code

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application

UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구

  • Choi, Dong-Seok (Department of Photonic Engineering, Chosun University) ;
  • Kim, Hyun-Kyoung (Department Polymer Science & Engineering, Chosun University) ;
  • Ahn, Tae-Jung (Department of Photonic Engineering, Chosun University)
  • 최동석 (조선대학교 광기술공학과) ;
  • 김현경 (조선대학교 응용화학소재공학과) ;
  • 안태정 (조선대학교 광기술공학과)
  • Received : 2011.01.26
  • Accepted : 2011.02.22
  • Published : 2011.04.25

Abstract

In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

본 논문에서는 ultraviolet (UV) 광의 세기를 원격으로 측정하기 위한 아조벤젠 (azobenzene) 코팅된 fiber Bragg grating (FBG)를 구현하였다. 아조벤젠 폴리머는 UV 광에 의해서 탄성이 변화하여 FBG의 코어 격자의 주기 변화를 유도하여 중심파장을 이동시킨다. 중심파장의 이동은 UV 광과 UV 이외의 파장대역의 빛에 의해서 복합적으로 발생하는데 중심파장의 이동량은 약 0.18 nm 이다. 측정의 정확성을 향상시키기 위해서 광원의 복사열에 의한 중심파장의 이동을 열차단 필터(thermal filter)를 사용하여 제거한 결과 중심파장의 이동량은 약 0.06 nm로 다소 감소하였지만 분석 결과 열에 의한 이동량이 충분히 제거된 것을 확인하였다. 또한 서로 다른 방법인 열경화법과 UV 경화법으로 각각 제작된 아조벤젠 폴리머를 이용하여 아조벤젠 코팅 FBG를 제작하였고, 각 제조법에 따른 UV센서로서의 적합성을 확인하였다. 몇 개의 밴드패스 필터(band pass filter)를 사용하여 파장에 대한 민감도를 측정한 결과, 단위 UV 세기당 중심파장의 이동량은 370nm 파장 밴드에서 가장 큰 값인 0.029로, 단파장 영역에서 반응성이 우수하다는 사실을 확인 하였다. 아조벤젠 폴리머의 흡수 스펙트럼과 아조벤젠 코팅 FBG의 파장 의존도가 서로 잘 일치하는 것을 확인하였다.

Keywords

References

  1. http://en.wikipedia.org/wiki/Ultraviolet.
  2. K. T. Kim, N. I Moon, and H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. Actuators A 160, 19-21 (2010). https://doi.org/10.1016/j.sna.2010.01.032
  3. K. J. Kim, J. H. Lee, S. W. Jang, H. D. Kim, J. W. Song, and S. W. Kang, “The micro-optic Mach-Zehnder interferometry : application to the UV sensors,” IEEE Sensors 2006, 185-188 (2006).
  4. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, “A rapid photomechanical switching polymer blend system composed of azobenzene-carrying poly(vinylether) and poly(carbonate),” Polymer 46, 5879-5883 (2005). https://doi.org/10.1016/j.polymer.2005.05.082
  5. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, “Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate,” Macromol. Rapid Commun. 26, 1032-1036 (2005). https://doi.org/10.1002/marc.200500209
  6. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, “Reversible photo mechanical switching behavior of azobenzene-containing semi-interpenetrating network under UV and visible light irradiation,” Macromol. Chem. Phys. 206, 2106-2111 (2005). https://doi.org/10.1002/macp.200500241
  7. S. Tanaka, H. K. Kim, A. Sudo, H. Nishida, and T. Endo, “Anisotropic photomechanical response of stretched blend film made of polycaprolactone-polyvinyl ether with azobenzene group as side chain,” Macromol. Chem. Phys. 209, 2071-2077 (2008). https://doi.org/10.1002/macp.200800215
  8. H. K. Kim, W. Shin, and T.-J. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22, 1404-1406 (2010). https://doi.org/10.1109/LPT.2010.2059375
  9. J. Paul, L. Zhao, and B. K. A. Ngoi, “Fiber-optic sensor for handgrip-strength monitoring: conception and design,” Appl. Opt. 44, 3696-3704 (2005). https://doi.org/10.1364/AO.44.003696

Cited by

  1. Improving the Sensitivity of an Ultraviolet Optical Sensor Based on a Fiber Bragg Grating by Coating With a Photoresponsive Material vol.26, pp.2, 2015, https://doi.org/10.3807/KJOP.2015.26.2.083