DOI QR코드

DOI QR Code

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro (Wind Power Grid-Adaptive Technology Research Center, Chonbuk National University) ;
  • Pernicka, Henry (Missouri University of Science & Technology)
  • 투고 : 2010.08.02
  • 심사 : 2011.03.10
  • 발행 : 2011.03.30

초록

A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

키워드

참고문헌

  1. Analytical Graphics Inc. Satellite Toolkit. http://www.agi.com.
  2. Banani, S. A. and Masnadi-Shirazi, M. A. (2007). A new version of unscented Kalman filter. World Academy of Science, Engineering and Technology, 26, 192-197.
  3. Brown, R. G. and Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied Kalman Filtering: with MATLAB Exercises and Solutions. 3rd ed. New York: Wiley. pp. 202-204.
  4. Cheng, Y., Crassidis, J. L., and Markley, F. L. (2006). Attitude estimation for large field-of-view sensors. Journal of the Astronautical Sciences, 54, 433-448. https://doi.org/10.1007/BF03256499
  5. Cheon, Y. J. and Kim, J. H. (2007). Unscented filtering in a unit quaternion space for spacecraft attitude estimation. IEEE International Symposium on Industrial Electronics, Vigo, Spain. pp. 66-71.
  6. Crassidis, J. L. and Markley, F. L. (2003). Unscented filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics, 26, 536-542. https://doi.org/10.2514/2.5102
  7. Gaylor, D. and Lightsey, E. G. (2003). GPS/INS Kalman filter design for spacecraft operating in the proximity of the International Space Station. AIAA Guidance, Navigation, and Control Conference, Austin, TX. AIAA-2003-5445.
  8. Gunnam, K. K., Hughes, D. C., Junkins, J. L., and Kehtarnavaz, N. (2002). A vision-based DSP embedded navigation sensor. IEEE Sensors Journal, 2, 428-441. https://doi.org/10.1109/JSEN.2002.806212
  9. Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92, 401-422. https://doi.org/10.1109/JPROC.2003.823141
  10. Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). New approach for filtering nonlinear systems. Proceedings of the American Control Conference Seattle, WA. USA. pp. 1628-1632.
  11. Junkins, J. L., Hughes, D. C., Wazni, K. P., and Pariyapong, V. (1999). Vision-based navigation for rendezvous, docking and proximity operations. Advances in the Astronautical Sciences, 101, 203-220.
  12. Kim, S. G., Crassidis, J. L., Cheng, Y., Fosbury, A. M., and Junkins, J. L. (2007). Kalman filtering for relative spacecraft attitude and position estimation. Journal of Guidance, Control, and Dynamics, 30, 133-143. https://doi.org/10.2514/1.22377
  13. Lefferts, E. J., Markley, F. L., and Shuster, M. D. (1982). Kalman filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics, 5, 417-429. https://doi.org/10.2514/3.56190
  14. Schaub, H. and Junkins, J. L. (1996). Stereographic orientation parameters for attitude dynamics: A generalization of the Rodrigues parameters. Journal of the Astronautical Sciences, 44, 1-19.
  15. Schaub, H. and Junkins, J. L. (2003). Analytical Mechanics of Space Systems. Reston, VA: American Institute of Aeronautics and Astronautics.
  16. Shuster, M. D. (1990). Kalman filtering of spacecraft attitude and the QUEST model. Journal of the Astronautical Sciences, 38, 377-393.
  17. Shuster, M. D. (1993). Survey of attitude representations. Journal of the Astronautical Sciences, 41, 439-517.
  18. Shuster, M. D. and Oh, S. D. (1981). Three-axis attitude determination from vector observations. Journal of Guidance and Control, 4, 70-77. https://doi.org/10.2514/3.19717
  19. Van Loan, C. F. (1978). Computing Integrals Involving the matrix exponential. IEEE Transactions on Automatic Control, AC-23, 395-404.
  20. VanDyke, M. C., Schwartz, J. L., and Hall, C. D. (2006). Unscented Kalman filtering for spacecraft attitude state and parameter estimation. AAS/AIAA Space Flight Mechanics Meeting, Tampa, FL. pp. 217-228.
  21. Wan, E. A. and Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. Proceedings of IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada. pp. 153-158.

피인용 문헌

  1. Visual Detection and Servoing for Automated Docking of Unmanned Spacecraft vol.12, pp.APISAT-2013, 2014, https://doi.org/10.2322/tastj.12.a107
  2. Vision-Based Spacecraft Relative Navigation Using Sparse-Grid Quadrature Filter vol.21, pp.5, 2013, https://doi.org/10.1109/TCST.2012.2214779
  3. Real-time relative orbit estimation of noncooperative space target based on nonlinear filtering vol.230, pp.14, 2016, https://doi.org/10.1177/0954410016630562