DOI QR코드

DOI QR Code

Effects of Saury Meat on Antihyperlipidemic and Antiarteriosclerosis Activities in Sprague-Dawley Rats

꽁치육의 고지혈증 유발 쥐에서의 항고지혈증 및 항동맥경화증 효능

  • Lee, Seung-Joo (Dept. of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Ha, Wang-Hyun (Dept. of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Choi, Hye-Jin (Dept. of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Cho, Soon-Yeong (Dept. of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Choi, Jong-Won (College of Pharmacy, Kyungsung University)
  • 이승주 (강릉원주대학교 식품가공유통학과) ;
  • 하왕현 (강릉원주대학교 식품가공유통학과) ;
  • 최혜진 (강릉원주대학교 식품가공유통학과) ;
  • 조순영 (강릉원주대학교 식품가공유통학과) ;
  • 최종원 (경성대학교 약학대학)
  • Received : 2011.08.17
  • Accepted : 2011.03.15
  • Published : 2011.04.30

Abstract

The effects of dietary supplementation of pacific saury on anti-hyperlipidemic activities were investigated using an animal test study in which normal rats were fed four different parts of saury, such as the whole body, meat, internal organs, or a mixture of head, caudal fin, and bone. Serum total lipid and triglyceride levels were significantly (p<0.05) reduced in rats fed saury meat at a dose of 200 mg/kg of body weight compared to hyperlipidemic control rats. There were also significant decreases in serum total cholesterol and LDL-cholesterol levels in the rats fed saury meat at 200 mg/kg of body weight. In addition, the atheroscrelosis index and superoxide dismutase in blood lipids were significantly (p<0.05) lowered in rats fed saury meat at 200 mg/kg of body weight compared to the control rats. In conclusion, our results indicate that saury meat contains unknown physiologically active components as than compared to other parts of saury, and has potential for use in the prevention of hyperlipidemic arteriosclerosis.

본 연구는 일상에서 우리가 쉽게 접할 수 있는 꽁치로 동물실험을 통해 항고지혈증 및 항동맥경화증의 효과를 검증 하였다. 실험동물에게 1% cholesterol과 0.5% Na-cholic acid를 첨가하여 인위적으로 고지혈증을 유발시킨 후 꽁치의 전체, 육, 내장, 머리+꼬리+뼈의 4종류로 나눈 분획을 경구투여 하여 항고지혈증 및 항동맥경화증의 효과를 살펴본 결과, 정상군에 비해 poloxamer-407을 투여하여 고지혈증을 유발한 흰쥐의 중성지방의 함량이 현저하게 감소하였다. 또한 poloxamer-407에 의한 고지혈증의 경감효과를 재확인할 목적으로 Triton WR-1339를 투여한 결과도 역시 중성지방의 함량이 현저하게 감소하였다. 이러한 결과를 기초로 4종류의 분획 중 다른 시료보다 육분획에서 대조군에 비해 지방조직, 혈청 지질량, 혈청 콜레스테롤 함량, 동맥경화지수, 간조직중의 지질 및 콜레스테롤의 함량, 분변 중의 지질의 함량 등이 현저하게 감소하였다. 혈중 지질과산화와 활성산소의 양은 현저하게 감소하지 않았지만, 활성산소를 제거하는 SOD의 양은 32.5%만큼 현저하게 증가한 것으로 보아 꽁치 육분획에서 항고지혈증 및 항동맥경화증의 효과가 탁월함을 알 수 있었다. 이상의 결과로부터 꽁치육의 항고지혈증 및 항동맥경화증의 효과를 확인할 수 있었다. 하지만 구체적으로 꽁치육의 어떠한 성분이 항고지혈증 및 항동맥경화증의 효과를 나타내는 지에 대해서는 추가 실험을 해볼 필요가 있다.

Keywords

References

  1. Yim MJ. 2007. Antiatherosclerosis animal study and the key functional compound identificaiton of the alginate extracted residue of sea tangle. MS Thesis. Kangnung National University, Gangwon, Korea.
  2. Health Insurance Review Agency. 2004. Health insurance review and evaluation statistical yearbook. 26th ed. Health Insurance Review Agency, Korea.
  3. Ministry of Health and Welfare. 2005. Korean national health and nutrition examination survey. Korea. p 49-58.
  4. Urano S, Midori HH, Tochihi N, Matsuo M, Ito H. 1991. Vitamin E and the susceptibility of erythrocytes and reconstituted liposomes to oxidative stress in aged diabetics. Lipids 26: 56-61.
  5. Sohal RS, Allen RG. 1990. Oxidative stress as a casual factor in determination and aging (A unifying hypothesis. Exp). Gerontol 25: 499-522.
  6. Yi KS. 2007. Studies on health functional activities of ascidian and sea cucumber. MS Thesis. Kangnung National University, Gangwon, Korea.
  7. Park YH, Park YS. 1991. Canning Technology. Hyungseul Publisher, Seoul, Korea. p 371.
  8. Oh SH, Kim DJ. 1995. The change in content of constitutive lipid and fatty acid of Pacific saury during natural freezing dry (Kwa Mae Kee). Korean J Food & Nutr 8: 239-252.
  9. Jeong YS, Hong JH, Byun DS. 1995. Antioxidant activity of different lipid extracts from mackerel viscera. J Korean Soc Food Nutr 24: 98-104.
  10. Lands WEM, Hemler ME, Crawford CG. 1977. Functions of polyunsaturated fatty acids: biosynthesis of prostaglandins. In Polyunsaturated Fatty Acids. American Oil Chemists' Society, Champaine, IL, USA. p 193.
  11. Terano T, Hirai A, Tamura Y, Yoshida S, Salmon J, Moncada S. 1986. Effect of eicosapentaenoic acid on eicosanoid formation by stimulated human polymorphonuclear leukocytes. Prog Lipid Res 25: 129-137. https://doi.org/10.1016/0163-7827(86)90026-3
  12. Singh G, Chandra PK. 1988. Biochemical and cellular effects of fish and fish oils. Prog Food Nutr Sci 12: 371-419.
  13. Fernandes G, Venkatraman JT. 1993. Role of n-3 fatty acid in health and disease. Nutr Res 13: 19-45. https://doi.org/10.1016/S0271-5317(05)80282-9
  14. Ota T, Takagi T, Kosaka S. 1980. Changes in lipids of young and adult saury. Cololabis saira (Pisces). Mar Ecol Prog Ser 3: 11-17. https://doi.org/10.3354/meps003011
  15. Munehiko M, Yoshimi K. 1985. Composition of fatty acid in commercially available fishes. Nara-ken Eisei Kenkyusho Nenpo 20: 56.
  16. Park YH, Choi SA, Anh CW, Yang YK. 1981. Changes in contents of amines in the dark-fleshed fish meat during processing and storage. 2. Formation of dimethylamine and trimethylamine in salted and dried mackerel pike and Spanish mackerel. Bull Korean Fish Soc 14: 7-14.
  17. Richmond W. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous-flow analysis. Clin Chem 22: 1579-1588.
  18. McGowan MW, Artiss JD, Stramdbergh DR. 1983. A peroxidase- coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29: 538-542.
  19. Chen PS, Toribara TY, Warnerm H. 1956. Microdetermination of phosphorus. Anal Chem 28: 1756-1760. https://doi.org/10.1021/ac60119a033
  20. Noma A, Matsushita S, Komori T. 1986. High-density lipoprotein cholesterol levels of very old people in the diagnosis of dementia. Oxford Journals 15: 267-270.
  21. Friedewald WT, Levy RI, Fredrickson SD. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Clin Chem 18: 499-502.
  22. Yagi K. 1987. Lipid peroxides and human diseases. Chem Phys Lipids 45: 337-342. https://doi.org/10.1016/0009-3084(87)90071-5
  23. Kobatake Y, Saito M, Kuroda K, Kobayashi S, Innami S. 1987. Influence of fish consumption on serum lipid and lipid peroxide concentrations in middle aged subjects. J Japan Soc Nutr & Food Sci 40: 103-110. https://doi.org/10.4327/jsnfs.40.103
  24. Oyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 42: 290-295.
  25. Folch J, Lees M, Solane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497.
  26. Joo DS, Lee JK, Choi YS, Cho SY, Je YK, Choi JW. 2003. Effect of seatangle oligosaccharide drink on serum and hepatic lipids in rats fed a hyperlipidemic diet. J Korean Soc Food Sci Nutr 32: 1364-1369. https://doi.org/10.3746/jkfn.2003.32.8.1364
  27. Goldstein JL, Brown MS. 1975. Familial hypercholesterolemia. A genetic regulatory defect in cholesterol metabolism. Am J Med 58: 147-152. https://doi.org/10.1016/0002-9343(75)90563-X
  28. Ross R. 1986. The pathogenesis of atherosclerosis. An update. New Engl J Med 314: 488-494. https://doi.org/10.1056/NEJM198602203140806
  29. Lee KH, Yoon SY, Kim HK. 2000. Effect of crab shell powder on lipid metabolism in diet-induced hyperlipidemic rats. J Korean Soc Food Sci Nutr 29: 453-459.
  30. Lee KS, Lee SR. 1996. Retarding effect of dietary fibers on the glucose and bile acid movement across a dialysis membrane in vitro. Korean J Nutr 29: 738-746.

Cited by

  1. Lipid Improvement Effect of Fermented Cynanchi wilfordii Radix in Hyperlipidemia Rats vol.30, pp.6, 2015, https://doi.org/10.6116/kjh.2015.30.6.83.