DOI QR코드

DOI QR Code

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong (Department of Materials Engineering, Soonchunhyang University) ;
  • Moon, Dae-Gyu (Department of Materials Engineering, Soonchunhyang University)
  • 투고 : 2011.02.21
  • 심사 : 2011.03.10
  • 발행 : 2011.04.25

초록

We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

키워드

참고문헌

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) [DOI: 10.1063/1.98799].
  2. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989) [DOI: 10.1063/1.343409].
  3. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998) [DOI: 10.1038/25954].
  4. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999). https://doi.org/10.1063/1.124258
  5. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005) [DOI: 10.1063/1.1862777].
  6. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001) [DOI: 10.1021/ja003693s].
  7. Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys. 92, 87 (2002) [DOI: 10.1063/1.1479751].
  8. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003) [DOI: 10.1063/1.1568146].
  9. H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, Adv. Mater. 18, 339 (2006) [DOI: 10.1002/adma.200501915].
  10. G. T. Lei, L. D. Wang, L. Duan, J. H. Wang, and Y. Qiu, Synth. Met. 144, 249 (2004) [DOI: 10.1016/j.synthmet.2004.03.010].
  11. K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, J. Appl. Phys. 95, 7798 (2004) [DOI: 10.1063/1.1751232].
  12. J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. Xue, F. So, and J. Shi, Appl. Phys. Lett. 93, 123306 (2008) [DOI: 10.1063/1.2978235].
  13. P. E. Burrows, A. B. Padmaperuma, L. S. Sapochak, P. Djurovich, M. E. Thompson, Appl. Phys. Lett. 88, 183503 (2008).
  14. J. Lee, J. I. Lee, K. I. Song, S. J. Lee, and H. Y. Chu, Appl. Phys. Lett. 92, 203305 (2008) [DOI: 10.1063/1.2936837].
  15. Y. Zheng, S. H. Eom, N. Chopra, J. Lee, F. So, and J. Xue, Appl. Phys. Lett. 92, 223301 (2008) [DOI: 10.1063/1.2937403].
  16. P. Strohriegl and J. V. Grazulevicius, Adv. Mater. 14, 1439 (2002) [DOI: 10.1002/1521-4095(20021016)14:20<1439::aidadma1439>3.0.co;2-h].
  17. J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, and J. A. G. Williams, Adv. Mater. 19, 4000 (2007) [DOI: 10.1002/adma.200700655].
  18. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082 (2001) [DOI: 10.1063/1.1400076].
  19. V. Maiorano, E. Perrone, S. Carallo, A. Biasco, P. P. Pompa, R. Cingolani, A. Croce, R. I. R. Blyth, and J. Thompson, Synth. Met. 151, 147 (2005) [DOI: 10.1016/j.synthmet.2005.03.022].
  20. J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, and P. Di Marco, Appl. Phys. Lett. 76, 2352 (2000). https://doi.org/10.1063/1.126343
  21. S. Mukhopadhyay, B. J. Topham, Z. G. Soos, and S. Ramasesha, J. Phys. Chem. A 112, 7271 (2008) [DOI: 10.1021/jp8012078].
  22. T. Y. Kim and D. G. Moon, Synth. Met. 160, 675 (2010) [DOI: 10.1016/j.synthmet.2009.12.027].
  23. L. Xiao, S. J. Su, Y. Agata, H. Lan, and J. Kido, Adv. Mater. 21, 1271 (2009) [DOI: 10.1002/adma.200802034].
  24. H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama, and J. Kido, Chem. Mater. 20, 5951 (2008) [DOI: 10.1021/cm801727d].
  25. C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, Appl. Phys. Lett. 79, 272 (2001) [DOI: 10.1063/1.1384896].
  26. J. Y. Lee and J. H. Kwon, Appl. Phys. Lett. 88, 183502 (2006) [DOI: 10.1063/1.2172296].

피인용 문헌

  1. P.145L:Late-News Poster: Synthesis and Device Application of Carboline Derivatives as High Triplet Energy Materials for Blue Phosphorescent OLEDs vol.44, pp.1, 2013, https://doi.org/10.1002/j.2168-0159.2013.tb06528.x
  2. Novel materials for fabrication and encapsulation of OLEDs vol.44, 2015, https://doi.org/10.1016/j.rser.2014.11.070
  3. Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally Activated Delayed Fluorescence vol.124, pp.45, 2012, https://doi.org/10.1002/ange.201206289
  4. Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally Activated Delayed Fluorescence vol.51, pp.45, 2012, https://doi.org/10.1002/anie.201206289
  5. P-131: Synthesis and Device Application of a Dibenzothiophene Derivative as Thermally Activated Delayed Fluorescence Material for Green Fluorescence OLED vol.46, pp.1, 2015, https://doi.org/10.1002/sdtp.10151