DOI QR코드

DOI QR Code

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Han-Bok (School of Materials Science and Engineering, University of Ulsan) ;
  • Yoon, Chang-Ho (School of Materials Science and Engineering, University of Ulsan) ;
  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Ill-Won (Department of Physics, University of Ulsan)
  • 투고 : 2011.01.24
  • 심사 : 2011.03.16
  • 발행 : 2011.04.25

초록

The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.

키워드

참고문헌

  1. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005) [DOI: 10.1016/j.jeurceramsoc.2005.03.125].
  2. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 111 (2007) [DOI: 10.1007/s10832-007-9047-0].
  3. J. R del, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009) [DOI: 10.1111/j.1551-2916.2009.03061.x].
  4. P. K. Panda, J. Mater. Sci. 44, 5049 (2009) [DOI: 10.1007/s10853-009-3643-0].
  5. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1961).
  6. V. A. Isupov, Ferroelectrics 315, 123 (2005) [DOI: 10.1080/001501990910276].
  7. B. Jaffe, W. R. Cook, and H. L. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
  8. T. Yamamoto, Jpn. J. Appl. Phys. 35, 5104 (1996) [DOI: 10.1143/JJAP.35.5104].
  9. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, J. Phys. Condens. Matter 12, 3267 (2000) [DOI: 10.1088/0953-8984/12/14/305].
  10. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999) [DOI: 10.1143/JJAP.38.5564].
  11. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006) [DOI: 10.1143/JJAP.45.4493].
  12. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Sens. Actuators A: Phys. 158, 84 (2010) [DOI: 10.1016/j.sna.2009.12.027].
  13. A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, Jpn. J. Appl. Phys. 49, 041504 (2010) [DOI: 10.1143/JJAP.49.041504].
  14. R. Zuo, C. Ye, X. Fang, and J. Li, J. Eur. Ceram. Soc. 28, 871 (2008) [DOI: 10.1016/j.jeurceramsoc.2007.08.011].
  15. IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987 (IEEE, New York, 1989) [DOI: 10.1109/IEEESTD.1988.79638].
  16. Joint Commission on Powder Diffraction Standards, JCPDS file number 36-0340.
  17. G. Fan, W. Lu, X. Wang, and F. Liang, Appl. Phys. Lett. 91, 202908 (2007) [DOI: 10.1063/1.2815918].
  18. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976) [DOI: 10.1107/s0567739476001551].
  19. S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. R del, J. Appl. Phys. 103, 034107 (2008) [DOI: 10.1063/1.2838472].
  20. S. T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. R del, J. Appl. Phys. 103, 034108 (2008) [DOI: 10.1063/1.2838476].
  21. W. Jo, T. Granzow, E. Aulbach, J. R del, and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009) [DOI: 10.1063/1.3121203].
  22. K. N. Pham, A. Hussain, C. W. Ahn, W. Kim Ill, S. J. Jeong, and J. S. Lee, Mater. Lett. 64, 2219 (2010) [DOI: 10.1016/j.matlet.2010.07.048].
  23. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997) [DOI: 10.1063/1.365983].

피인용 문헌

  1. Effect of Li2CO3 addition on the structural, optical, ferroelectric, and electric-field-induced strain of lead-free BNKT-based ceramics vol.85, 2015, https://doi.org/10.1016/j.jpcs.2015.05.010
  2. High energy storage property and breakdown strength of Bi 0.5 (Na 0.82 K 0.18 ) 0.5 TiO 3 ceramics modified by (Al 0.5 Nb 0.5 ) 4+ complex-ion vol.666, 2016, https://doi.org/10.1016/j.jallcom.2016.01.103
  3. Structural, ferroelectric, optical properties of A-site-modified Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics vol.77, 2015, https://doi.org/10.1016/j.jpcs.2014.10.010
  4. Ergodicity and nonergodicity in La-doped Bi1/2(Na0.82K0.18)1/2TiO3 relaxors vol.66, pp.7, 2015, https://doi.org/10.3938/jkps.66.1077
  5. Temperature-insensitive strain behavior in 0.99[(1−x )Bi0.5 (Na0.80 K0.20 )0.5 TiO3 −x BiFeO3]-0.01Ta lead-free piezoelectric ceramics vol.14, pp.4, 2017, https://doi.org/10.1111/ijac.12681
  6. The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.237
  7. Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution vol.24, pp.11, 2013, https://doi.org/10.1177/1045389X12447986
  8. The Study on the Improvement of Piezoelectric and Electrical Characteristics of Bi0.5(Na0.78K0.22)0.5TiO3Ceramics Modified by the La-based ABO3Pervskite Structure vol.27, pp.11, 2014, https://doi.org/10.4313/JKEM.2014.27.11.707
  9. Large Electromechanical Response in Lead-Free La-Doped BNKT-BST Piezoelectric Ceramics vol.97, pp.8, 2014, https://doi.org/10.1111/jace.12952
  10. Strain enhancement of lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics by Sn doping vol.60, pp.2, 2012, https://doi.org/10.3938/jkps.60.212
  11. Enhancement in the microstructure and the strain properties of Bi1/2(Na,K)1/2TiO3-based lead-free ceramics by Li substitution vol.61, pp.6, 2012, https://doi.org/10.3938/jkps.61.895
  12. Study on the Ring Type Stator Design Technique for a Traveling Wave Rotary Type Ultrasonic Motor vol.51, pp.9S2, 2012, https://doi.org/10.7567/JJAP.51.09MD13
  13. Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2 Na1/2 TiO3 -0.25SrTiO3 Lead-Free Incipient Piezoceramic vol.97, pp.6, 2014, https://doi.org/10.1111/jace.12884
  14. Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics vol.62, pp.7, 2013, https://doi.org/10.3938/jkps.62.1004
  15. Large signal electrical property of CuO-doped of a Bi0.5Na0.5TiO3–SrTiO3 2017, https://doi.org/10.1007/s10832-017-0106-x
  16. Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta vol.511, pp.1, 2012, https://doi.org/10.1016/j.jallcom.2011.09.043
  17. Band gap modification and ferroelectric properties of Bi0.5(Na,K)0.5TiO3-based by Li substitution vol.4, pp.1, 2014, https://doi.org/10.1063/1.4863092
  18. Giant pyroelectric properties in La and Ta co-doped lead-free 0.94Na 0.5 Bi 0.5 TiO 3 -0.06BaTiO 3 ceramics vol.709, 2017, https://doi.org/10.1016/j.jallcom.2017.03.143
  19. Microstructural and Ferroelectric Properties of Bi0.5(Na,K)0.5TiO3-Based Modified by Bi0.5Li0.5TiO3 Lead-Free Piezoelectric Ceramics vol.56, pp.9, 2015, https://doi.org/10.2320/matertrans.MA201553
  20. Current Development in Lead-FreeBi0.5(Na,K)0.5TiO3-Based Piezoelectric Materials vol.2014, 2014, https://doi.org/10.1155/2014/365391
  21. Comparison of Ferroelectric and Strain Properties between BaTiO3- and BaZrO3-Modified Bi1/2(Na0.82K0.18)1/2TiO3Ceramics vol.51, pp.9S2, 2012, https://doi.org/10.7567/JJAP.51.09MD02
  22. Dielectric, ferroelectric and piezoelectric properties of (1- x )(Bi 0.5 Na 0.5 ) 0.935 Ba 0.065 Ti - x (LiSbO 3 ) solid solutions vol.44, pp.1, 2018, https://doi.org/10.1016/j.ceramint.2017.09.211
  23. Effects of SrZrO3addition on piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3ceramic vol.54, pp.10S, 2015, https://doi.org/10.7567/JJAP.54.10ND12
  24. Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics vol.120, pp.3, 2016, https://doi.org/10.1063/1.4958853
  25. Role of Sintering Temperature on Giant Field-Induced Strain in Lead-Free Bi0.5(Na,K)0.5TiO3-Based Ceramics vol.474, pp.1, 2015, https://doi.org/10.1080/00150193.2015.996458
  26. Enhanced Low-Field Strain in Bi-Based Lead-Free Ferroelectric-Relaxor Composites vol.487, pp.1, 2015, https://doi.org/10.1080/00150193.2015.1071619
  27. Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition vol.66, pp.8, 2015, https://doi.org/10.3938/jkps.66.1317
  28. Phase structure, ferroelectric properties, and electric field-induced large strain in lead-free 0.99[(1− x )(Bi 0.5 Na 0.5 )TiO 3 - x (Bi 0.5 K 0.5 )TiO 3 ]–0.01Ta piezoelectric ceramics vol.42, pp.8, 2016, https://doi.org/10.1016/j.ceramint.2016.03.053
  29. The decrease of depolarization temperature and the improvement of pyroelectric properties by doping Ta in lead-free 0.94Na 0.5 Bi 0.5 TiO 3 -0.06BaTiO 3 ceramics vol.43, pp.4, 2017, https://doi.org/10.1016/j.ceramint.2016.12.004
  30. Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics vol.682, 2016, https://doi.org/10.1016/j.jallcom.2016.04.297
  31. Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis vol.39, 2013, https://doi.org/10.1016/j.ceramint.2012.10.166
  32. Structural, Dielectric and Field-Induced Strain Properties ofLa-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics vol.25, pp.10, 2015, https://doi.org/10.3740/MRSK.2015.25.10.566
  33. Low-Firing Pb(Zr,Ti)O3-Based Multilayer Ceramic Actuators Using Ag Inner Electrode vol.12, pp.6, 2011, https://doi.org/10.4313/TEEM.2011.12.6.249
  34. Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient vol.39, 2013, https://doi.org/10.1016/j.ceramint.2012.10.046
  35. Influence of film thickness on ferroelectric properties and leakage current density in lead-free Bi0.5(Na0.80K0.20)0.5TiO3 films vol.4, pp.8, 2017, https://doi.org/10.1088/2053-1591/aa7b43
  36. Dielectric, ferroelectric and field induced strain properties of Nb-modified Pb-free 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 ceramics vol.574, 2013, https://doi.org/10.1016/j.jallcom.2013.05.140
  37. Tailoring ergodicity through selective A-site doping in the Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3 system vol.117, pp.13, 2015, https://doi.org/10.1063/1.4916719
  38. Effects of Bi(Mg1/2Sn1/2)O3Modification on the Dielectric and Piezoelectric Properties of Bi1/2(Na0.8K0.2)1/2TiO3Ceramics vol.49, pp.3, 2012, https://doi.org/10.4191/kcers.2012.49.3.266
  39. Effect of Zr Doping on Structural and Ferroelectric Properties of Lead-Free Bi0.5(Na0.80K0.20)0.5TiO3 Films vol.46, pp.10, 2017, https://doi.org/10.1007/s11664-017-5603-9
  40. The effect of BZT doping on phase formation, dielectric and ferroelectric properties of BNLT ceramics vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3515-0
  41. Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies vol.70, 2012, https://doi.org/10.1016/j.matlet.2011.11.068
  42. Dielectric and piezoelectric properties of 0.99Bi0.5(Na0.82K0.18)0.5Ti(1−x)Nb x O3-0.01NaSbO3 ceramics vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6557-7
  43. Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics vol.41, 2015, https://doi.org/10.1016/j.ceramint.2015.03.150
  44. Effects of A-site Vacancies on the Piezoelectric Properties of 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3Lead-free Piezoelectric Ceramics vol.51, pp.6, 2014, https://doi.org/10.4191/kcers.2014.51.6.527
  45. Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics vol.113, pp.15, 2013, https://doi.org/10.1063/1.4801893
  46. lead-free relaxor ferroelectrics ceramics vol.11, pp.03, 2018, https://doi.org/10.1142/S179360471850056X