
Commun. Korean Math. Soc. 26 (2011), No. 2, pp. 261–271

DOI 10.4134/CKMS.2011.26.2.261

ON THE HYERS-ULAM-RASSIAS STABILITY OF THE

JENSEN EQUATION IN DISTRIBUTIONS

Eun Gu Lee and Jaeyoung Chung

Abstract. We consider the Hyers-Ulam-Rassias stability problem∥∥∥∥2u ◦
A

2
− u ◦ P1 − u ◦ P2

∥∥∥∥ ≤ ε(|x|p + |y|p), x, y ∈ Rn

for the Schwartz distributions u, which is a distributional version of the
Hyers-Ulam-Rassias stability problem of the Jensen functional equation∣∣∣∣2f (

x+ y

2

)
− f(x)− f(y)

∣∣∣∣ ≤ ε(|x|p + |y|p), x, y ∈ Rn

for the function f : Rn → C.

1. Introduction

The stability problems of functional equations go back to 1940 when S. M.
Ulam proposed the following problem [24]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·)
such that

d(f(xy), f(x)f(y)) ≤ ε.

Then does there exist a group homomorphism h and δϵ > 0 such that

d(f(x), h(x)) ≤ δϵ

for all x ∈ G1

This problem was solved affirmatively by D. H. Hyers under the assumption
that G2 is a Banach space (see Hyers [12]). Since then, the stability problems
of many other functional equations have been investigated [1, 2, 3, 4, 5, 6, 7,
9, 10, 16, 17, 18, 19, 20, 21, 22]. Among them, generalizing the well known
stability theorem of D. H. Hyers, Th. M. Rassias [22] and Z. Gajda [9] showed
the following stability theorem for the Cauchy equation:
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Theorem 1.1 ([9, 22]). Let f be a mapping from a normed linear space X to
a Banach space Y satisfying the inequality

(1.1) ||f(x+ y)− f(x)− f(y)|| ≤ ϵ(∥x∥p + ∥y∥p), p ̸= 1

for all x, y ∈ X (x ̸= 0 and y ̸= 0 if p < 0). Then there exists a unique
function g : X → Y satisfying

g(x+ y)− g(x)− g(y) = 0

such that

||f(x)− g(x)|| ≤ 2ε

|2p − 2|
∥x∥p

for all x ∈ X (x ̸= 0 if p < 0).

As a similar result, generalizing the Hyers-Ulam stability theorem for the
Jensen functional equation of K. Kominek [14], S. M Jung [13] prove a Hyers-
Ulam-Rassias stability theorem for the Jensen functional equation

(1.2)

∣∣∣∣2f (x+ y

2

)
− f(x)− f(y)

∣∣∣∣ ≤ ϵ(∥x∥p + ∥y∥p).

For more interesting results related to the Hyers-Ulam stability of Jensen
functional equation we refer the reader to the results of J.-H. Bae, D.-O. Lee
and W.-G. Park [1] and that of C.-G. Park [16, 17, 18] and C.-G. Park and
W.-G. Park [19, 20].

In this paper, we consider the stability theorem for the Jensen functional
equation (1.2) in the spaces of generalized functions such as the spaces S ′ and
D′ of tempered distributions and distributions of L. Schwartz, respectively.
Making use of the pullbacks of generalized function we extend the inequality
(1.2) to distributions u as follows:

(1.3)

∥∥∥∥2u ◦ A
2
− u ◦ P1 − u ◦ P2

∥∥∥∥ ≤ ε(|x|p + |y|p)

for even integers p ≥ 2, where A(x, y) = x + y, P1(x, y) = x, P2(x, y) =
y, x, y ∈ Rn, and u ◦ A, v ◦ P1 and w ◦ P2 are the pullbacks of u, v, w by
A,P1 and P2, respectively. Also | · | denotes the Euclidean norm and the in-
equality ∥·∥ ≤ ψ(x, y) in (1.3) means that |⟨·, φ⟩| ≤ ∥ψφ∥L1 for all test functions
φ ∈ C∞

c (R2n) which will be introduced in Section 2.
As the main result, we prove the following: Let u ∈ D′ satisfy

(1.4)

∥∥∥∥2u ◦ A
2
− u ◦ P1 − u ◦ P2

∥∥∥∥ ≤ ϵ(|x|2p + |y|2p)

for some integer p > 1. Then there exist a unique a ∈ Cn and c ∈ C such that

∥u− a · x− c∥ ≤ 2ϵ

4p − 2
|x|2p.
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2. Schwartz distributions

We briefly introduce the space D′(Rn) of distributions and the space S ′(Rn)
of tempered distributions. Here we use the multi-index notations, |α| = α1 +
· · · + αn, α! = α1! · · ·αn!, x

α = xα1
1 · · ·xαn

n and ∂α = ∂α1
1 · · · ∂αn

n for x =
(x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn

0 , where N0 is the set of non-negative
integers and ∂j = ∂

∂xj
. We also denote by C∞

c (Rn) the set of all infinitely

differentiable functions on Rn with compact supports.

Definition 2.1. A distribution u is a linear form on C∞
c (Rn) such that for

every compact set K ⊂ Rn there exist constants C > 0 and k ∈ N0 such that

|⟨u, φ⟩| ≤ C
∑
|α|≤k

sup |∂αφ|

for all φ ∈ C∞
c (Rn) with supports contained in K. The set of all distributions

is denoted by D′(Rn).

Definition 2.2. We denote by S or S(Rn) the Schwartz space of all infinitely
differentiable functions φ in Rn such that

(2.1) ∥φ∥α,β = sup
x

|xα∂βφ(x)| <∞

for all α, β ∈ Nn
0 , equipped with the topology defined by the seminorms ∥·∥α,β .

The elements of S are called rapidly decreasing functions and the elements of
the dual space S ′ are called tempered distributions.

It is well known that the following topological inclusions:

C∞
c ↪→ S, S ′ ↪→ D′.

Example 2.1 ([11, 23]). In the usual sense of differentiations, the derivatives
of locally integrable functions make no sense, however, one can differentiate
every locally integrable function in the space of Schwartz distributions. As a
matter of fact, it is well known that every derivative ∂αf of a locally integrable
function f : Rn → C defines a distribution via the relation

(2.2) ⟨∂αf, φ⟩ = (−1)|α|
∫
Rn

f(x)∂αφ(x)dx, φ ∈ C∞
c (Rn).

Also it is well known that every derivative ∂αf of locally integrable function
f : Rn → C defines a distribution via the relation (2.2) provided that f satisfies
the growth condition; there exist positive constants C and N such that

|f(x)| ≤ C(1 + |x|)N

for all x ∈ Rn.

Example 2.2 ([11, 23]). Let H be the Heaviside function on R defined by
H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. Then it is easy to see that H ′ = δ
where δ denotes the Dirac measure on R which is defined by

⟨δ, φ⟩ = φ(0), φ ∈ C∞
c (R).
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Also every finite sum u =
∑

|α|≤m ∂αδ of derivatives of δ defines a tempered

distribution.

We denote by Ωj open subsets of Rnj for j = 1, 2, with n1 ≥ n2.

Definition 2.3. Let uj ∈ D′(Ωj) and λ : Ω1 → Ω2 be a smooth function such
that for each x ∈ Ω1 the derivative λ′(x) is surjective, that is, the Jacobian
matrix ∇λ of λ has rank n2. Then there exists a unique continuous linear map
λ∗ : D′(Ω2) → D′(Ω1) such that Λ∗u = u ◦ λ when u is a continuous function.
We call λ∗u the pullback of u by λ and often denoted by u ◦ λ.

In particular if λ is a diffeomorphism (a bijection with λ, λ−1 smooth func-
tions) the pullback u ◦ λ can be written as follows:

(2.3) ⟨u ◦ λ, φ⟩ = ⟨u, (φ ◦ λ−1)(x)|(∇λ−1(x)|⟩.
As a matter of fact, the pullbacks u ◦ A, u ◦ P1, u ◦ P2 can be written in a

transparent way as

(2.4) ⟨u ◦A , φ(x, y)⟩ = ⟨u ,
∫
φ(x− y, y) dy⟩,

(2.5) ⟨u ◦ P1 , φ(x, y)⟩ = ⟨u ,
∫
φ(x, y) dy⟩,

(2.6) ⟨u ◦ P2 , φ(x, y)⟩ = ⟨u ,
∫
φ(x, y) dx⟩

for all test functions φ ∈ S(R2n).
We refer the reader to ([11], chapter VI) for pullbacks of distributions and

to [11, 23] for more details of distributions and tempered distributions.

3. Main theorems

We denote by δ(x) the function on Rn,

δ(x) =

A exp

(
− 1√

1−|x|2

)
, |x| < 1

0, |x| ≥ 1,

where

A =

(∫
|x|<1

exp

(
− 1√

1− |x|2

)
dx

)−1

.

It is easy to see that δ(x) is an infinitely differentiable function with support
{x : |x| ≤ 1}. We employ the regularizing function δt(x) := t−nδ(x/t), t > 0.
Let u ∈ D′. Then, for each t > 0, (u ∗ δt)(x) = ⟨uy, δt(x − y)⟩ is a smooth
function of x ∈ Rn and (u ∗ δt)(x) → u as t→ 0+ in the sense that

lim
t→0+

∫
(u ∗ δt)(x)φ(x) dx = ⟨u, φ⟩

for all φ ∈ C∞
c .
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Lemma 3.1. Let u ∈ D′ satisfy the inequality

(3.1)

∥∥∥∥2u ◦ A
2
− u ◦ P1 − u ◦ P2

∥∥∥∥ ≤ ϵ(|x|2p + |y|2p)

for some integer p > 1. Then u ∈ S ′.

Proof. We denote by

Ψ(x, y, t, s) = ϵ(|ξ|2p ∗ δt(ξ))(x) + ϵ(|η|2p ∗ δs(η))(y).
Convolving δt(x)δs(y) in each side of (3.1) the inequality (3.1) is converted to
the following stability problem

(3.2) |(u∗ ∗ δt ∗ δs)(x+ y)− (u ∗ δt)(x)− (u ∗ δs)(y)| ≤ Ψ(x, y, t, s)

for x, y ∈ Rn, t, s > 0, where ⟨u∗, φ(x)⟩ = 2n+1⟨u, φ(2x)⟩. From (3.2) it is easy
to see that

f(x) := lim sup
t→0+

(u ∗ δt)(x)

exists. Letting y = 0 in (3.2) we have

(3.3) |(u∗ ∗ δt ∗ δs)(x)− (u ∗ δt)(x)− (u ∗ δs)(0)| ≤ Ψ(x, 0, t, s)

for x ∈ Rn, t, s > 0. From (3.2) and (3.3) we have

(3.4)
|(u ∗ δt)(x+ y)− (u ∗ δt)(x)− (u ∗ δs)(y) + (u ∗ δs)(0)|

≤ Ψ(x, y, t, s) + Ψ(x+ y, 0, t, s)

for x, y ∈ Rn, t, s > 0. Letting s → 0+ so that (u ∗ δs)(y) → f(y) in (3.4) we
have

(3.5)
|(u ∗ δt)(x+ y)− (u ∗ δt)(x)− f(y) + f(0)|

≤ Ψ(x, y, t, 0+) + Ψ(x+ y, 0, t, 0+)

for x, y ∈ Rn, t, s > 0. Putting x = 0 and letting t→ 0+ so that (u ∗ δt)(0) →
f(0) in (3.5) we have

(3.6) ∥u− f(y)∥ ≤ 2ϵ|y|2p.

On the other hand, let

D(x, y, t) = (u ∗ δt)(x+ y)− (u ∗ δt)(x)− f(y) + f(0).

Then we have

|f(x+ y)− f(x)− f(y) + f(0)| ≤|D(x, y, t)|+ | −D(0, x+ y, t)|+ |D(0, x, t)|
≤Ψ(x, y, t, 0+) + Ψ(x+ y, 0, t, 0+)

+ Ψ(0, x+ y, t, 0+) + Ψ(x+ y, 0, t, 0+)

+ Ψ(0, x, t, 0+) + Ψ(x, 0, t, 0+)

for all x, y ∈ Rn, t > 0. Letting t→ 0+ in the above inequality we have

(3.7) |f(x+ y)− f(x)− f(y) + f(0)| ≤ 3ϵ|x+ y|2p + 3ϵ|x|2p + ϵ|y|2p.
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By the results in [9, 10], there exists a unique function A satisfying

(3.8) A(x+ y) = A(x) +A(y)

such that

(3.9) |f(x)−A(x)− f(0)| ≤ ϵ(3 · 4p + 4)

4p − 2
|x|2p.

Indeed, let F (x) = f(x) − f(0). Then A is given by a locally uniform limit
of the sequence of the continuous functions Am(x) = 2nF (2−nx). Thus A is
a continuous function. Thus the solution A of the Cauchy functional equation
(3.8) has the form A(x) = a · x for some a ∈ Cn. Now, from (3.6) and (3.9) we
have

(3.10) ∥u− a · x− f(0)∥ ≤ K|x|2p,

where K = 5·4pϵ
4p−2 . It follows from (3.10) that u is a locally integrable function

satisfying

|u(x)| ≤ |a · x|+ |f(0)|+K|x|2p.
Thus u ∈ S ′. This completes the proof. □

Now we may employ the n-dimensional heat kernel Et(x) given by

(3.11) Et(x) = (4πt)−n/2 exp(−|x|2/4t), x ∈ Rn, t > 0.

It is easy to see that the heat kernel Et(·) belongs to the Schwartz space
S(Rn) for each t > 0. Let u ∈ S ′. Then its Gauss transform

ũ(x, t) = (u ∗ Et)(x) = ⟨uy, Et(x− y)⟩, x ∈ Rn, t > 0,

is well defined. As a matter of fact the following result holds [10]:

Lemma 3.2 ([15]). Let u ∈ S ′(Rn). Then its Gauss transform ũ(x, t) is a
C∞–solution of the heat equation satisfying:

(i) There exist positive constants C, M , N and δ such that

(3.12) |ũ(x, t)| ≤ Ct−M (1 + |x|)N in Rn × (0, δ),

(ii) ũ(x, t) → u as t→ 0+ in the sense that for every φ ∈ S,

⟨u, φ⟩ = lim
t→0+

∫
ũ(x, t)φ(x) dx.

Conversely, every C∞–solution U(x, t) of the heat equation satisfying the esti-
mate (3.12) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈ S ′.

It is well known that the weak semigroup property of the heat kernel

(3.13) (Et ∗ Es)(x) = Et+s(x)

holds for convolution. This semigroup property will be very useful later.
Throughout the paper, we denote by

H2p(x, t) = [|ξ|2p ∗ Et(ξ)](x, t).
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Since |x|2p =
∑

|γ|=p
p!
γ!x

2γ we have

H2p(x, t) =
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

t|α|x2γ−2α

α!(2γ − 2α)!
.

Note that if p = 1 we have

H2γ(x, t) = |x|2 + 2nt

and for p = 1, 2, . . .

H2γ(x, 0) = |x|2p.

We need the following:

Lemma 3.3. Let g : Rn × (0,∞) → C be a continuous function satisfying the
inequality

(3.14) |g(x+ y, t+ s)− g(x, t)− g(y, s)| ≤ ϵ(H2p(x, t) +H2p(y, s))

for some integer p > 1. Then there exist unique constants a ∈ Cn, b ∈ C such
that

|g(x, t)− a · x− bt| ≤ ϵψp(x, t)

for all x ∈ Rn, t > 0, where

ψp(x, t) =
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

2|α|+1t|α|x2γ−2α

(2|2γ| − 2|α|+1)α!(2γ − 2α)!
.

Proof. We can follow the same approach as in [22, 9]. Indeed, replacing both
x and y by x

2 , both t and s by t
2 in (3.14) we have

|g(x, t)− 2g(2−1x, 2−1t)| ≤ 2ϵH2p(2
−1x, 2−1t)

for all x ∈ Rn, t > 0. Making use of the induction argument and triangle
inequality we have

(3.15)

|g(x, t)− 2mg(2−mx, 2−mt)| ≤ϵ
m∑
j=1

2jH2p(2
−jx, 2−jt)

≤ϵ
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

am,α
t|α|x2γ−2α

α!(2γ − 2α)!

for all n ∈ N, x ∈ Rn, t > 0, where am,α = 2|α|+1(1− 2(|α|−|2γ|+1)m)/(2|2γ| −
2|α|+1).

Replacing x, t by 2−mx, 2−mt, respectively in (3.14) and multiplying 2m in
the result it follows from p > 1 that

Am(x, t) := 2mg(2−mx, 2−mt)
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is a Cauchy sequence which converges locally uniformly, say to A(x, t). Letting
m→ ∞ in (3.15) we have

(3.16) |g(x, t)−A(x, t)| ≤ ϵ
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

aα
t|α|x2γ−2α

α!(2γ − 2α)!

for all x ∈ Rn, t > 0, where aα = 2|α|+1/(2|2γ| − 2|α|+1).
Replacing x, y, t, s by 2−mx, 2−my, 2−mt, 2−ms in (3.14), respectively,

multiplying 2m and letting m→ ∞ it follows from the fact p > 1 that

(3.17) A(x+ y, t+ s)−A(x, t)−A(y, s) = 0

for all x, y ∈ Rn, t, s > 0. To prove the uniqueness of A(x, t), let B(x, t)
be another function satisfying (3.12) and (3.13). Then it follows from (3.16),
(3.17) and the triangle inequality that for all n ∈ N,

(3.18)

|A(x, t)−B(x, t)| ≤ m|A
(
x

m
,
t

m

)
−B

(
x

m
,
t

m

)
|

≤ 2ϵ
∑
|γ|=p

p!

γ!
(2γ)!m1−|γ|

∑
0≤α≤γ

aα
t|α|x2γ−2α

α!(2γ − 2α)!

for all x ∈ Rn, t > 0. Letting m → ∞, we have A(x, t) = B(x, t) for all
x ∈ Rn, t > 0. This proves the uniqueness.

Now it is well known that every continuous solution A(x, t) of the Cauchy
equation (1.4) has the form

A(x, t) = a · x+ bt

for some a ∈ Cn, b ∈ C. Thus we have

(3.19) |g(x, t)− a · x− bt| ≤ ϵ
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

aα
t|α|x2γ−2α

α!(2γ − 2α)!

for all x, y ∈ Rn, t > 0, where aα = 2|α|+1/(2|2γ| − 2|α|+1). This completes the
proof. □

Lemma 3.4. Let f : Rn × (0,∞) → C be a continuous function satisfying the
inequality

(3.20)

∣∣∣∣2f (x+ y

2
,
t+ s

4

)
− f(x, t)− f(y, s)

∣∣∣∣ ≤ ϵ(H2p(x, t) +H2p(y, s))

for some integer p > 1. Then there exist a unique a ∈ Cn, a unique b ∈ C and
complex constant c such that

|f(x, t)− a · x− bt− c| ≤ 2ϵ 4pψp(x, t)

for all x ∈ Rn, t > 0.
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Proof. Let F (x, t) = 2f(x/2, t/4). Then we have

(3.21) |F (x+ y, t+ s)− f(x, t)− f(y, s)| ≤ ϵ(H2p(x, t) +H2p(y, s)).

Putting y = 0 in (3.21), it is easy to see that c := lim sups→0+ f(0, s) exists.
Putting y = 0 and letting s→ 0+ in (3.21) so that f(0, s) → c we have

(3.22) |F (x, t)− f(x, t)− c| ≤ ϵH2p(x, t).

Now it follows from (3.21) and (3.22) that

(3.23) |G(x+ y, t+ s)−G(x, t)−G(y, s)| ≤ 2ϵ(H2p(x, t) +H2p(y, s)),

where G(x, t) = F (x, t)− 2c. Thus it follows from Lemma 3.3 that there exist
a unique a ∈ Cn, a unique b ∈ C such that

(3.24) |F (x, t)− a · x− bt− 2c| ≤ 2ϵ ψp(x, t).

Replacing x by 2x, t by 4t in (3.24) and dividing by 2 in the result we have
(3.25)
|f(x, t)− a · x− 2bt− c| ≤2ϵ |ψp(2x, 4t)|

≤2ϵ4p
∑
|γ|=p

p!

γ!
(2γ)!

∑
0≤α≤γ

2|α|+1

2|2γ| − 2|α|+1

t|α|x2γ−2α

α!(2γ − 2α)!

for all x ∈ Rn, t > 0. This completes the proof. □

Theorem 3.5. Let u ∈ D′ satisfy

(3.26)

∥∥∥∥2u ◦ A
2
− u ◦ P1 − u ◦ P2

∥∥∥∥ ≤ ϵ(|x|2p + |y|2p)

for some integer p > 1. Then there exist a unique a ∈ Cn and c ∈ C such that
can be written uniquely in the form

∥u− a · x− c∥ ≤ 2ϵ
4p

4p − 2
|x|2p.

Proof. Convolving in each side of (3.26) the tensor product Et(x)Es(y) of n-
dimensional heat kernels we have in view of (2.3), (2.4), (2.5) and the semigroup
property (3.13),[(

2u ◦ A
2

)
∗ (Et(ξ)Es(η))

]
(x, y) = ⟨2n+1uξ,

∫
Et(x− 2ξ + η)Es(y − η) dη⟩

= ⟨2n+1uξ, (Et ∗ Es)(x+ y − 2ξ)⟩
= ⟨2n+1uξ, Et+s(x+ y − 2ξ)⟩

= ⟨2n+1uξ, 2
−nE t+s

4

(
x+ y

2
− ξ

)
⟩

= 2ũ

(
x+ y

2
,
t+ s

4

)
.
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Similarly we have

[(u ◦ P1) ∗ (Et(ξ)Es(η))](x, y) = ũ(x, t),

[(u ◦ P2) ∗ (Et(ξ)Es(η))](x, y) = ũ(y, s),

where ũ(x, t) are the Gauss transform of u. Thus the inequality (3.26) is con-
verted to the stability problem∣∣∣∣2ũ(x+ y

2
,
t+ s

4

)
− ũ(x, t)− ũ(y, s)

∣∣∣∣ ≤ ϵ(H2p(x, t) +H2p(y, s)).

Now applying Lemma 3.4 and letting t→ 0+ we have

∥u− a · x− c∥ ≤ 2ϵ
4p

4p − 2
|x|2p. □

Since every locally integrable function f(x) can be viewed as a distribution
via the equation

⟨f, φ⟩ =
∫
f(x)φ(x)dx,

we have the following stability theorem for locally integrable functions in almost
everywhere sense.

Theorem 3.6. Let Ω1, Ω2 ⊂ Rn such that m(Rn \Ω1) = m(Rn \Ω2) = 0 and
let f : Rn → C be locally integrable functions satisfying the inequality∣∣∣∣2f (x+ y

2
,
t+ s

4

)
− f(x, t)− f(y, s)

∣∣∣∣ ≤ ϵ(H2p(x, t) +H2p(y, s))

for all x ∈ Ω1, y ∈ Ω2. Then there exist a unique a ∈ Cn, complex constants c
and Ω ⊂ Rn with m(Rn \ Ω) = 0 such that

∥f(x)− a · x− c∥ ≤ 2ϵ
4p

4p − 2
|x|2p

for all x ∈ Ω.
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[11] L. Hörmander, The Analysis of Linear Partial Differential Operator I, Springer–Verlag,

Berlin–New York, 1983.
[12] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci.

USA 27 (1941), 222–224.
[13] S. M. Jung, Hyers-Ulam-Rassias stability of Jensen’s equations and its application, Proc.

Amer. Math. Soc. 126 (1998), no. 11, 3137–3143.
[14] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math.

22 (1989), no. 2, 499–507.
[15] T. Matsuzawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118 (1990),

133–153.
[16] C.-G. Park, Generalized Jensen’s equations in a Banach module, Southeast Asian Bull.

Math. 29 (2005), no. 6, 1117–1123.

[17] , Universal Jensen’s equations in Banach modules over a C∗-algebra and its
unitary group, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 6, 1047–1056.

[18] , Generalized Jensen’s equations in Banach modules over a unital C∗-algebra,
Southwest J. Pure Appl. Math. 2002 (2002), no. 2, 52–63.

[19] C.-G. Park and W.-G. Park, On the stability of the Jensen’s equation in a Hilbert
module, Bull. Korean Math. Soc. 40 (2003), no. 1, 53–61.

[20] , On the Jensen’s equation in Banach modules, Taiwanese J. Math. 6 (2002), no.
4, 523–531.

[21] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math.
Anal. Appl. 251 (2000), no. 1, 264–284.

[22] , On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc. 72 (1978), no. 2, 297–300.
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