LOCALLY-ZERO GROUPOIDS AND THE CENTER OF BIN(X)

Hiba F. Fayoumi

Abstract

In this paper we introduce the notion of the center $Z \operatorname{Bin}(X)$ in the semigroup $\operatorname{Bin}(X)$ of all binary systems on a set X, and show that if $(X, \bullet) \in Z \operatorname{Bin}(X)$, then $x \neq y$ implies $\{x, y\}=\{x \bullet y, y \bullet x\}$. Moreover, we show that a groupoid $(X, \bullet) \in Z \operatorname{Bin}(X)$ if and only if it is a locally-zero groupoid.

1. Preliminaries

The notion of the semigroup $(\operatorname{Bin}(X), \square)$ was introduced by H. S. Kim and J. Neggers ([2]). Given binary operations "*" and "•" on a set X, they defined a product binary operation " \square " as follows: $x \square y:=(x * y) \bullet(y * x)$. This in turn yields a binary operation on $\operatorname{Bin}(X)$, the set of all groupoids defined on X turning $(\operatorname{Bin}(X), \square)$ into a semigroup with identity $(x * y=x)$, the left-zero-semigroup, and an analog of negative one in the right-zero-semigroup.

Theorem $1.1([2])$. The collection $(\operatorname{Bin}(X), \square)$ of all binary systems (groupoids or algebras) defined on X is a semigroup, i.e., the operation \square as defined in general is associative. Furthermore, the left-zero-semigroup is an identity for this operation.

Example $1.2([2])$. Let $(R,+, \cdot, 0,1)$ be a commutative ring with identity and let $L(R)$ denote the collection of groupoids $(R, *)$ such that for all $x, y \in R$

$$
x * y=a x+b y+c,
$$

where $a, b, c \in R$ are fixed constants. We shall consider such groupoids to be linear groupoids. Notice that $a=1, b=c=0$ yields $x * y=1 \cdot x=x$, and thus the left-zero-semigroup on R is a linear groupoid. Now, suppose that $(R, *)$ and (R, \bullet) are linear groupoids where $x * y=a x+b y+c$ and $x \bullet y=d x+e y+f$. Then $x \square y=d(a x+b y+c)+e(a y+b x=c)+f=(d a+e b) x+(d b+e a) y+(d+e) c+f$, whence $(R, \square)=(R, *) \square(R, \bullet)$ is also a linear groupoid, i.e., $(L(R), \square)$ is a semigroup with identity.

Received January 7, 2010.
2010 Mathematics Subject Classification. 20N02.
Key words and phrases. center, locally-zero, $\operatorname{Bin}(X)$.

Example 1.3 ([2]). Suppose that in $\operatorname{Bin}(X)$ we consider all those groupoids $(X, *)$ with the orientation property: $x * y \in\{x, y\}$ for all x and y. Thus, $x * x=x$ as a consequence. If $(X, *)$ and (X, \bullet) both have the orientation property, then for $x \square y=(x * y) \bullet(y * x)$ we have the possibilities: $x * x=$ $x, y * y=y, x * y \in\{x, y\}$ and $y * x \in\{x, y\}$, so that $x \square y \in\{x, y\}$. It follows that if $O P(X)$ denotes this collection of groupoids, then $(O P(X), \square)$ is a subsemigroup of $(\operatorname{Bin}(X), \square)$. In a sequence of papers Nebeský $([3,4,5])$ has sought to associate with graphs (V, E) groupoids $(V, *)$ with various properties and conversely. He defined a travel groupoid $(X, *)$ as a groupoid satisfying the axioms: $(u * v) * u=u$ and $(u * v) * v=u$ implies $u=v$. If one adds these two laws to the orientation property, then $(X, *)$ is an OP-travel-groupoid. In this case $u * v=v$ implies $v * u=u$, i.e., $u v \in E$ implies $v u \in E$, i.e., the digraph (X, E) is a (simple) graph if $u u \notin E$, with $u * u=u$. Also, if $u \neq v$, then $u * v=u$ implies $(u * v) * v=u * v=u$ is impossible, whence $u * v=v$ and $u v \in E$, so that (X, E) is a complete (simple) graph.

2. The center of $\operatorname{Bin}(X)$ protect

Let $Z \operatorname{Bin}(X)$ denote the collection of elements (X, \bullet) of $\operatorname{Bin}(X)$ such that $(X, *) \square(X, \bullet)=(X, \bullet) \square(X, *), \forall(X, *) \in \operatorname{Bin}(X)$, i.e., $Z \operatorname{Bin}(X)=\{(X, \bullet) \in$ $\operatorname{Bin}(X) \mid(X, *) \square(X, \bullet)=(X, \bullet) \square(X, *), \forall(X, *) \in \operatorname{Bin}(X)\}$. We call $Z \operatorname{Bin}(X)$ the center of the semigroup $\operatorname{Bin}(X)$.

Proposition 2.1. The left-zero-semigroup and the right-zero-semigroup on X are both in $Z \operatorname{Bin}(X)$.

Proof. Given a groupoid $(X, *)$, let (X, \bullet) be a left-zero-semigroup. Then $(x \bullet$ $y) *(y \bullet x)=x * y=(x * y) \bullet(y * x)$ for all $x, y \in X, \operatorname{proving}(X, \bullet) \in Z B i n(X)$. Similarly, it holds for the right-zero-semigroup.

Proposition 2.2. If $(X, \bullet) \in Z B$ in (X), then $x \bullet x=x$ for all $x \in X$.
Proof. If $(X, \bullet) \in Z \operatorname{Bin}(X)$, then $(X, \bullet) \square(X, *)=(X, *) \square(X, \bullet)$ for all $(X, *) \in$ $\operatorname{Bin}(X)$. Let $(X, *) \in \operatorname{Bin}(X)$ defined by $x * y=a$ for any $x, y \in X$ where $a \in X$. Then $(x \bullet y) *(y \bullet x)=a$ and $(x * y) \bullet(y * x)=a \bullet a$ for any $x, y \in X$. Hence we obtain $a \bullet a=a$. If we change ($X, *$) in $\operatorname{Bin}(X)$ so that $x * y=b$ for every $x, y \in X$ and b is any other element of X, then we find that $a \bullet a=a$ for any $a \in X$.

Any set can be well-ordered by well-ordering principle, and a well-ordered set is linearly ordered. With this notion we prove the following.

Theorem 2.3. If $(X, \bullet) \in Z \operatorname{Bin}(X)$, then $x \neq y$ implies $\{x, y\}=\{x \bullet y, y \bullet x\}$.
Proof. Let $(X,<)$ be a linearly ordered set and let $(X, *) \in \operatorname{Bin}(X)$ be defined by

$$
\begin{equation*}
x * y:=\min \{x, y\}, \quad \forall x, y \in X . \tag{1}
\end{equation*}
$$

Then we have the following:

$$
(x * y) \bullet(y * x)=\left\{\begin{array}{lc}
x & \text { if } x \leq y \tag{2}\\
y & \text { otherwise }
\end{array}\right.
$$

Similarly, we have

$$
\begin{equation*}
(x \bullet y) *(y \bullet x)=\min \{x \bullet y, y \bullet x\} \in\{x \bullet y, y \bullet x\} \tag{3}
\end{equation*}
$$

If $(X, \bullet) \in Z \operatorname{Bin}(X)$, then $x<y$ implies $x \in\{x \bullet y, y \bullet x\}$ for all $x, y \in X$. Similarly, if we define $(X, *) \in \operatorname{Bin}(X)$ by $x * y:=\max \{x, y\}$ for all $x, y \in X$, then $x<y$ implies $y \in\{x \bullet y, y \bullet x\}$ for all $x, y \in X$ when $(X, \bullet) \in Z \operatorname{Bin}(X)$. In any case, we obtain that if $(X, \bullet) \in Z \operatorname{Bin}(X)$, then

$$
\begin{equation*}
x, y \in\{x \bullet y, y \bullet x\} \tag{4}
\end{equation*}
$$

We consider four cases: (i) $x<y, x \bullet y<y \bullet x$; (ii) $x<y, y \bullet x<x \bullet y$; (iii) $y<x, x \bullet y<y \bullet x$; (iv) $y<x, y \bullet x<x \bullet y$. Routine calculations give us the conclusion that $\{x, y\}=\{x \bullet y, y \bullet x\}$.

Proposition 2.4. Let $(X, \bullet) \in Z \operatorname{Bin}(X)$. If $x \neq y$ in X, then $(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zero-semigroup.
Proof. Assume that (X, \bullet) is not a left-zero-semigroup and $x \neq y$ in X. Then (X, \bullet) has a subtable:

$$
\begin{array}{c|ll}
\bullet & x & y \\
\hline x & x & y \\
y & a & y
\end{array}
$$

where $a \in\{x, y\}$. Note that $x \bullet x=x, y \bullet y=y$ by Proposition 2.2. Let $(X, *) \in \operatorname{Bin}(X)$ such that X has a subtable:

$$
\begin{array}{c|cc}
* & x & y \\
\hline x & x & x \\
y & x & y
\end{array}
$$

Since $(X, \bullet) \in Z \operatorname{Bin}(X)$, we have $(x * y) \bullet(y * x)=(x \bullet y) *(y \bullet x)$ and hence $x \bullet x=y * a$. If $a=x$, then $x \bullet x=y * x=x$. If $a=y$, then $x=x \bullet x=y * y=y$, a contradiction. Hence (X, \bullet) should have a subtable:

$$
\begin{array}{c|cc}
\bullet & x & y \\
\hline x & x & y \\
y & x & y
\end{array}
$$

This means (X, \bullet) should be a right-zero-semigroup. Similarly, if (X, \bullet) is not a right-zero-semigroup, then it must have a 2×2 table of a left-zerosemigroup.

Proposition 2.5. If $(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zerosemigroup for any $x \neq y$ in X, then $(X, \bullet) \in Z \operatorname{Bin}(X)$.

Proof. Given $(X, *) \in \operatorname{Bin}(X)$, let $x \neq y$ in X. Consider $(x * y) \bullet(y * x)$ and $(x \bullet y) *(y \bullet x)$. If we assume that $(\{x, y\}, \bullet)$ is a left-zero-semigroup, then $(x * y) \bullet(y * x)=x * y=(x \bullet y) *(y \bullet x)$. Similarly, if we assume that $(\{x, y\}, \bullet)$ is a right-zero-semigroup, then $(x * y) \bullet(y * x)=y * x=(x \bullet y) *(y \bullet x)$. Hence $(X, \bullet) \in Z \operatorname{Bin}(X)$.

Example 2.6. Let $X:=\{a, b, c\}$ with the following table:

$$
\begin{array}{c|ccc}
\bullet & a & b & c \\
\hline a & a & a & c \\
b & b & b & b \\
c & a & c & c
\end{array}
$$

Then (X, \bullet) is neither a left-zero-semigroup nor a right-zero-semigroup, while it has the following subtables:

$$
\begin{array}{c|lll|lll|ll}
\bullet & a & b \\
\hline a & a & a \\
b & b & b
\end{array} \quad \begin{array}{lllll}
\bullet & a & c \\
\hline a & a & c & c
\end{array} \quad \begin{array}{ll}
\bullet & b \\
\hline b & b \\
c & b \\
c & c
\end{array}
$$

By applying Proposition 2.5, we can see that $(X, \bullet) \in Z \operatorname{Bin}(X)$.
Proposition 2.7. Let $A b(X)$ be the collection of all commutative binary systems on X. Then $(A b(X) \cap Z \operatorname{Bin}(X), \square)$ is a right ideal of $(Z \operatorname{Bin}(X), \square)$.

Proof. Let $(X, \bullet) \in Z \operatorname{Bin}(X)$ and $(X, *) \in(A b(X) \cap Z \operatorname{Bin}(X))$. Then by Proposition 2.2, we have $x \square y=(x * y) \bullet(y * x)=(x * y) \bullet(x * y)=x * y$. Also, by Proposition 2.2, we get $y \square x=(y * x) \bullet(x * y)=(y * x) \bullet(y * x)=y * x$. Therefore, $(X, *) \square(X, \bullet) \in(A b(X) \cap Z \operatorname{Bin}(X))$ and so $(A b(X) \cap Z \operatorname{Bin}(X))$ $\square Z \operatorname{Bin}(X) \subseteq(A b(X) \cap Z \operatorname{Bin}(X))$.

3. Locally-zero groupoids

A groupoid (X, \bullet) is said to be locally-zero if (i) $x \bullet x=x$ for all $x \in X$; (ii) for any $x \neq y$ in $X,(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zerosemigroup.

Using Propositions 2.2, 2.4 and 2.5 we obtain the following.
Theorem 3.1. A groupoid $(X, \bullet) \in Z B i n(X)$ if and only if it is a locally-zero groupoid.

Given any two elements $x, y \in X$, there exists exactly one left-zero-semigroup and one right-zero-semigroup, and so if we apply Theorem 3.1 we have the following corollary.

Corollary 3.2. If $|X|=n$, there are $2\left(\begin{array}{c}\binom{n}{2} \text { different (but may not be isomorphic) }\end{array}\right.$ locally-zero groupoids.

For example, if $n=3$, there are $2^{3}=8$ such groupoids, i.e.,

\bullet	a	b	c	\bullet	a	b	c	-	a	b	c	-	a	b	c
a	c	a	a	b	a										
b	c	b	b	b	b	b	a	b	b						
c	c	c	c	c	c	b	c	c	a	c	c	c	c	c	c
\bullet	a	b	c	\bullet	a	b	c	\bullet	a	b	c	\bullet	a	b	c
a	a	b	c	a	a	a	c	a	a	b	a	a	a	b	c
b	a	b	c	b	b	b	c	b	a	b	c	b	a	b	b
c	a	b	c	c	a	b	c	c	c	b	c	c	a	c	c

Corollary 3.3. The collection of all locally-zero groupoids on X forms a subsemigroup of $(\operatorname{Bin}(X), \square)$.

Proof. Let $x \neq y$ in X. If $(\{x, y\}, \bullet)$ is a left-zero-semigroup and $(\{x, y\}, *)$ is a right-zero semigroup, then $x \square y=(x \bullet y) *(y \bullet x)=x * y=y, y \square x=$ $(y \bullet x) *(x \bullet y)=y * x=x$, i.e., $(\{x, y\}, \square)$ is a right-zero-semigroup. Similarly, we can prove the other three cases, i.e.,

\square	L	R
L	L	R
R	R	L

where L and R denote the "left-zero-semigroup" and the "right-zero-semigroup", respectively. This proves that the collection of all locally-zero groupoids on X forms a subsemigroup of $(\operatorname{Bin}(X)$, , ㅁ)

Using Corollary 3.3, we can see that $(X, \bullet) \square(X, *)$ belongs to the center $Z \operatorname{Bin}(X)$ of $\operatorname{Bin}(X)$ for any $(X, \bullet),(X, *) \in Z \operatorname{Bin}(X)$.

Proposition 3.4. Not all locally-zero groupoids are semigroups.
Proof. Consider (X, \bullet) where $X:=\{a, b, c\}$ and " \bullet " is given by the following table:

$$
\begin{array}{c|ccc}
\bullet & a & b & c \\
\hline a & a & a & c \\
b & b & b & b \\
c & a & c & c
\end{array}
$$

Then it is easy to see that (X, \bullet) is locally-zero. Consider the subtables:

$$
\begin{array}{c|ccc|ccc|cc}
\bullet & a & b \\
\hline a & a & a \\
b & b & b
\end{array} \quad \begin{array}{llll}
\bullet & a & c \\
\hline a & a & c \\
c & a & c
\end{array} \quad \begin{array}{ll}
\bullet & b \\
c & c \\
\hline b & b \\
c & b \\
\hline
\end{array}
$$

and notice that $(\{a, b\}, \bullet),(\{a, c\}, \bullet)$ and $(\{b, c\}, \bullet)$ are a left-, a right- and a left-zero-semigroup, respectively. But $(a \bullet b) \bullet c=a \bullet c=c$, while $a \bullet(b \bullet c)=$ $a \bullet b=a$. Hence (X, \bullet) fails to be a semigroup and the result follows.

Proposition 3.5. Let (X, \bullet) be a locally-zero groupoid. If (X, \bullet) is a semigroup, then it is either a left-zero-semigroup or a right-zero-semigroup.
Proof. Suppose that (X, \bullet) is a semigroup. Then $(x \bullet y) \bullet z=x \bullet(y \bullet z)$ for all $x, y, z \in X$. By Theorem 3.1, $(X, \bullet) \in Z \operatorname{Bin}(X)$, and then by Proposition $2.4,(\{x, y\}, \bullet)$ is either a left- or a right-zero-semigroup for any $x \neq y$. In fact, $(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are also either a left- or a right-zero-semigroup for any $x \neq z$ and any $y \neq z$, respectively. Assume that $(\{x, y\}, \bullet),(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a left-, a right- and a left-zero-semigroup, respectively. Then, $(x \bullet y) \bullet z=x \bullet z=z$ while $x \bullet(y \bullet z)=x \bullet y=x$, a contradiction. Similarly, this leads to a contradiction if we assume that $(\{x, y\}, \bullet),(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a right-, a left- and a right-zero-semigroup, respectively. Now suppose that $(\{x, y\}, \bullet),(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a left-, a left- and a right-zerosemigroup, respectively. Then, $(y \bullet x) \bullet z=y \bullet z=z$ while $y \bullet(x \bullet z)=$ $y \bullet x=y$, a contradiction. Moreover, this leads to a contradiction if we assume that $(\{x, y\}, \bullet),(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a right-, a right- and a left-zerosemigroup, respectively. Hence, the only two other cases are when all three subgroupoids are either all left- or all right-zero-semigroups. Therefore, (X, \bullet) is either a left- or a right-zero-semigroup.
Proposition 3.6. Let (X, \bullet) be a locally-zero groupoid. Then

$$
(X, \bullet) \square(X, \bullet)=(X, \square)
$$

is the left-zero-semigroup on X.
Proof. Suppose that $(\{x, y\}, \bullet)$ is the right-zero-semigroup. Then $x \square y=$ $(x \bullet y) \bullet(y \bullet x)=y \bullet x=x$. On the other hand, if $(\{x, y\}, \bullet)$ is the left-zero-semigroup, then $x \square y=(x \bullet y) \bullet(y \bullet x)=x \bullet y=x$. Thus in both cases, $x \square y=x$ for all $x \in X$ making (X, \square) the left-zero-semigroup.

References

[1] R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, New York, 1958.
[2] H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. 45 (2008), no. 4, 651-661.
[3] L. Nebeský, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48(123) (1998), no. 4, 701-710.
[4] _, A tree as a finite nonempty set with a binary operation, Math. Bohem. 125 (2000), no. 4, 455-458.
[5] , Travel groupoids, Czechoslovak Math. J. 56(131) (2006), no. 2, 659-675.
Department of Mathematics
University of Alabama
Tuscaloosa, AL, 35487-0350, USA
E-mail address: hiba.fayoumi@ua.edu

