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LOCALLY-ZERO GROUPOIDS AND

THE CENTER OF BIN(X)

Hiba F. Fayoumi

Abstract. In this paper we introduce the notion of the center ZBin(X)

in the semigroup Bin(X) of all binary systems on a set X, and show
that if (X, •) ∈ ZBin(X), then x ̸= y implies {x, y} = {x • y, y • x}.
Moreover, we show that a groupoid (X, •) ∈ ZBin(X) if and only if it is
a locally-zero groupoid.

1. Preliminaries

The notion of the semigroup (Bin(X), 2) was introduced by H. S. Kim and
J. Neggers ([2]). Given binary operations “∗” and “•” on a set X, they defined
a product binary operation “2” as follows: x2y := (x ∗ y) • (y ∗ x). This
in turn yields a binary operation on Bin(X), the set of all groupoids defined
on X turning (Bin(X),2) into a semigroup with identity (x ∗ y = x), the
left-zero-semigroup, and an analog of negative one in the right-zero-semigroup.

Theorem 1.1 ([2]). The collection (Bin(X), 2) of all binary systems (groupo-
ids or algebras) defined on X is a semigroup, i.e., the operation 2 as defined in
general is associative. Furthermore, the left-zero-semigroup is an identity for
this operation.

Example 1.2 ([2]). Let (R,+, ·, 0, 1) be a commutative ring with identity and
let L(R) denote the collection of groupoids (R, ∗) such that for all x, y ∈ R

x ∗ y = ax+ by + c,

where a, b, c ∈ R are fixed constants. We shall consider such groupoids to be
linear groupoids. Notice that a = 1, b = c = 0 yields x ∗ y = 1 · x = x, and thus
the left-zero-semigroup on R is a linear groupoid. Now, suppose that (R, ∗) and
(R, •) are linear groupoids where x∗y = ax+by+c and x•y = dx+ey+f . Then
x2 y = d(ax+by+c)+e(ay+bx = c)+f = (da+eb)x+(db+ea)y+(d+e)c+f ,
whence (R,2) = (R, ∗)2(R, •) is also a linear groupoid, i.e., (L(R),2) is a
semigroup with identity.
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Example 1.3 ([2]). Suppose that in Bin(X) we consider all those groupoids
(X, ∗) with the orientation property : x ∗ y ∈ {x, y} for all x and y. Thus,
x ∗ x = x as a consequence. If (X, ∗) and (X, •) both have the orientation
property, then for x2 y = (x ∗ y) • (y ∗ x) we have the possibilities: x ∗ x =
x, y ∗ y = y, x ∗ y ∈ {x, y} and y ∗ x ∈ {x, y}, so that x2 y ∈ {x, y}. It
follows that if OP (X) denotes this collection of groupoids, then (OP (X),2) is
a subsemigroup of (Bin(X), 2) . In a sequence of papers Nebeský ([3, 4, 5]) has
sought to associate with graphs (V,E) groupoids (V, ∗) with various properties
and conversely. He defined a travel groupoid (X, ∗) as a groupoid satisfying the
axioms: (u ∗ v) ∗ u = u and (u ∗ v) ∗ v = u implies u = v. If one adds these
two laws to the orientation property, then (X, ∗) is an OP-travel-groupoid. In
this case u ∗ v = v implies v ∗ u = u, i.e., uv ∈ E implies vu ∈ E, i.e., the
digraph (X,E) is a (simple) graph if uu ̸∈ E, with u ∗ u = u. Also, if u ̸= v,
then u ∗ v = u implies (u ∗ v) ∗ v = u ∗ v = u is impossible, whence u ∗ v = v
and uv ∈ E, so that (X,E) is a complete (simple) graph.

2. The center of Bin (X) protect

Let ZBin(X) denote the collection of elements (X, •) of Bin(X) such that
(X, ∗)2 (X, •) = (X, •)2 (X, ∗), ∀(X, ∗) ∈ Bin(X), i.e., ZBin (X) = {(X, •)∈
Bin (X) |(X, ∗)2 (X, •)=(X, •)2 (X, ∗), ∀(X, ∗) ∈Bin(X)}.We call ZBin(X)
the center of the semigroup Bin(X).

Proposition 2.1. The left-zero-semigroup and the right-zero-semigroup on X
are both in ZBin(X).

Proof. Given a groupoid (X, ∗), let (X, •) be a left-zero-semigroup. Then (x •
y)∗ (y •x) = x∗y = (x∗y)• (y ∗x) for all x, y ∈ X, proving (X, •) ∈ ZBin(X).
Similarly, it holds for the right-zero-semigroup. □

Proposition 2.2. If (X, •) ∈ ZBin(X), then x • x = x for all x ∈ X.

Proof. If (X, •) ∈ ZBin(X), then (X, •)2(X, ∗)=(X, ∗)2(X, •) for all (X, ∗) ∈
Bin(X). Let (X, ∗) ∈ Bin(X) defined by x ∗ y = a for any x, y ∈ X where
a ∈ X. Then (x • y) ∗ (y • x) = a and (x ∗ y) • (y ∗ x) = a • a for any x, y ∈ X.
Hence we obtain a • a = a. If we change (X, ∗) in Bin (X) so that x ∗ y = b for
every x, y ∈ X and b is any other element of X, then we find that a • a = a for
any a ∈ X. □

Any set can be well-ordered by well-ordering principle, and a well-ordered
set is linearly ordered. With this notion we prove the following.

Theorem 2.3. If (X, •) ∈ ZBin(X), then x ̸= y implies {x, y} = {x•y, y•x}.

Proof. Let (X,<) be a linearly ordered set and let (X, ∗) ∈ Bin(X) be defined
by

(1) x ∗ y := min{x, y}, ∀x, y ∈ X.
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Then we have the following:

(2) (x ∗ y) • (y ∗ x) =

{
x if x ≤ y

y otherwise.

Similarly, we have

(3) (x • y) ∗ (y • x) = min{x • y, y • x} ∈ {x • y, y • x}.

If (X, •) ∈ ZBin(X), then x < y implies x ∈ {x • y, y • x} for all x, y ∈ X.
Similarly, if we define (X, ∗) ∈ Bin(X) by x ∗ y := max{x, y} for all x, y ∈ X,
then x < y implies y ∈ {x • y, y • x} for all x, y ∈ X when (X, •) ∈ ZBin(X).
In any case, we obtain that if (X, •) ∈ ZBin(X), then

(4) x, y ∈ {x • y, y • x}.

We consider four cases: (i) x < y, x • y < y • x; (ii) x < y, y • x < x • y; (iii)
y < x, x • y < y • x; (iv) y < x, y • x < x • y. Routine calculations give us the
conclusion that {x, y} = {x • y, y • x}. □

Proposition 2.4. Let (X, •) ∈ ZBin(X). If x ̸= y in X, then ({x, y}, •) is
either a left-zero-semigroup or a right-zero-semigroup.

Proof. Assume that (X, •) is not a left-zero-semigroup and x ̸= y in X. Then
(X, •) has a subtable:

• x y
x x y
y a y

where a ∈ {x, y}. Note that x • x = x, y • y = y by Proposition 2.2. Let
(X, ∗) ∈ Bin(X) such that X has a subtable:

∗ x y
x x x
y x y

Since (X, •) ∈ ZBin(X), we have (x ∗ y) • (y ∗ x) = (x • y) ∗ (y • x) and hence
x•x = y∗a. If a = x, then x•x = y∗x = x. If a = y, then x = x•x = y∗y = y,
a contradiction. Hence (X, •) should have a subtable:

• x y
x x y
y x y

This means (X, •) should be a right-zero-semigroup. Similarly, if (X, •) is
not a right-zero-semigroup, then it must have a 2 × 2 table of a left-zero-
semigroup. □

Proposition 2.5. If ({x, y}, •) is either a left-zero-semigroup or a right-zero-
semigroup for any x ̸= y in X, then (X, •) ∈ ZBin(X).
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Proof. Given (X, ∗) ∈ Bin(X), let x ̸= y in X. Consider (x ∗ y) • (y ∗ x) and
(x • y) ∗ (y • x). If we assume that ({x, y}, •) is a left-zero-semigroup, then
(x ∗ y) • (y ∗x) = x ∗ y = (x • y) ∗ (y •x). Similarly, if we assume that ({x, y}, •)
is a right-zero-semigroup, then (x ∗ y) • (y ∗ x) = y ∗ x = (x • y) ∗ (y • x). Hence
(X, •) ∈ ZBin(X). □

Example 2.6. Let X := {a, b, c} with the following table:

• a b c
a a a c
b b b b
c a c c

Then (X, •) is neither a left-zero-semigroup nor a right-zero-semigroup, while
it has the following subtables:

• a b
a a a
b b b

• a c
a a c
c a c

• b c
b b b
c c c

By applying Proposition 2.5, we can see that (X, •) ∈ ZBin(X).

Proposition 2.7. Let Ab (X) be the collection of all commutative binary sys-
tems on X. Then (Ab (X) ∩ ZBin (X) ,2) is a right ideal of (ZBin (X) ,2).

Proof. Let (X, •) ∈ ZBin (X) and (X, ∗) ∈ (Ab (X) ∩ ZBin (X)). Then by
Proposition 2.2, we have x2y = (x ∗ y)•(y ∗ x) = (x ∗ y)•(x ∗ y) = x∗y. Also,
by Proposition 2.2, we get y2x = (y ∗ x) • (x ∗ y) = (y ∗ x) • (y ∗ x) = y ∗ x.
Therefore, (X, ∗)2 (X, •) ∈ (Ab (X) ∩ ZBin (X)) and so (Ab (X) ∩ ZBin (X))
2ZBin (X) ⊆ (Ab (X) ∩ ZBin (X)). □

3. Locally-zero groupoids

A groupoid (X, •) is said to be locally-zero if (i) x • x = x for all x ∈ X; (ii)
for any x ̸= y in X, ({x, y}, •) is either a left-zero-semigroup or a right-zero-
semigroup.

Using Propositions 2.2, 2.4 and 2.5 we obtain the following.

Theorem 3.1. A groupoid (X, •) ∈ ZBin(X) if and only if it is a locally-zero
groupoid.

Given any two elements x, y ∈ X, there exists exactly one left-zero-semigroup
and one right-zero-semigroup, and so if we apply Theorem 3.1 we have the fol-
lowing corollary.

Corollary 3.2. If |X| = n, there are 2(
n
2) different (but may not be isomorphic)

locally-zero groupoids.
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For example, if n = 3, there are 23 = 8 such groupoids, i.e.,

• a b c
a a a a
b b b b
c c c c

• a b c
a a a a
b b b c
c c b c

• a b c
a a a c
b b b b
c a c c

• a b c
a a b a
b a b b
c c c c

• a b c
a a b c
b a b c
c a b c

• a b c
a a a c
b b b c
c a b c

• a b c
a a b a
b a b c
c c b c

• a b c
a a b c
b a b b
c a c c

Corollary 3.3. The collection of all locally-zero groupoids on X forms a sub-
semigroup of (Bin(X),2).

Proof. Let x ̸= y in X. If ({x, y}, •) is a left-zero-semigroup and ({x, y}, ∗)
is a right-zero semigroup, then x2y = (x • y) ∗ (y • x) = x ∗ y = y, y2x =
(y •x) ∗ (x • y) = y ∗x = x, i.e., ({x, y},2) is a right-zero-semigroup. Similarly,
we can prove the other three cases, i.e.,

2 L R
L L R
R R L

where L andR denote the “left-zero-semigroup” and the “right-zero-semigroup”,
respectively. This proves that the collection of all locally-zero groupoids on X
forms a subsemigroup of (Bin(X),2). □

Using Corollary 3.3, we can see that (X, •)2(X, ∗) belongs to the center
ZBin (X) of Bin(X) for any (X, •), (X, ∗) ∈ ZBin(X).

Proposition 3.4. Not all locally-zero groupoids are semigroups.

Proof. Consider (X, •) where X := {a, b, c} and “•” is given by the following
table:

• a b c
a a a c
b b b b
c a c c

Then it is easy to see that (X, •) is locally-zero. Consider the subtables:

• a b
a a a
b b b

• a c
a a c
c a c

• b c
b b b
c c c

and notice that ({a, b} , •), ({a, c} , •) and ({b, c} , •) are a left-, a right- and a
left-zero-semigroup, respectively. But (a • b) • c = a • c = c, while a • (b • c) =
a • b = a. Hence (X, •) fails to be a semigroup and the result follows. □
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Proposition 3.5. Let (X, •) be a locally-zero groupoid. If (X, •) is a semi-
group, then it is either a left-zero-semigroup or a right-zero-semigroup.

Proof. Suppose that (X, •) is a semigroup. Then (x • y) • z = x • (y • z) for
all x, y, z ∈ X. By Theorem 3.1, (X, •) ∈ ZBin (X), and then by Proposition
2.4, ({x, y} , •) is either a left- or a right-zero-semigroup for any x ̸= y. In fact,
({x, z} , •) and ({y, z} , •) are also either a left- or a right-zero-semigroup for
any x ̸= z and any y ̸= z, respectively. Assume that ({x, y} , •), ({x, z} , •) and
({y, z} , •) are a left-, a right- and a left-zero-semigroup, respectively. Then,
(x • y)•z = x•z = z while x•(y • z) = x•y = x, a contradiction. Similarly, this
leads to a contradiction if we assume that ({x, y} , •), ({x, z} , •) and ({y, z} , •)
are a right-, a left- and a right-zero-semigroup, respectively. Now suppose
that ({x, y} , •), ({x, z} , •) and ({y, z} , •) are a left-, a left- and a right-zero-
semigroup, respectively. Then, (y • x) • z = y • z = z while y • (x • z) =
y •x = y, a contradiction. Moreover, this leads to a contradiction if we assume
that ({x, y} , •), ({x, z} , •) and ({y, z} , •) are a right-, a right- and a left-zero-
semigroup, respectively. Hence, the only two other cases are when all three
subgroupoids are either all left- or all right-zero-semigroups. Therefore, (X, •)
is either a left- or a right-zero-semigroup. □
Proposition 3.6. Let (X, •) be a locally-zero groupoid. Then

(X, •)2 (X, •) = (X,2)

is the left-zero-semigroup on X.

Proof. Suppose that ({x, y} , •) is the right-zero-semigroup. Then x2y =
(x • y) • (y • x) = y • x = x. On the other hand, if ({x, y} , •) is the left-
zero-semigroup, then x2y = (x • y) • (y • x) = x • y = x. Thus in both cases,
x2y = x for all x ∈ X making (X,2) the left-zero-semigroup. □
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