Commun. Korean Math. Soc. **26** (2011), No. 2, pp. 163–168 DOI 10.4134/CKMS.2011.26.2.163

LOCALLY-ZERO GROUPOIDS AND THE CENTER OF BIN(X)

HIBA F. FAYOUMI

ABSTRACT. In this paper we introduce the notion of the center ZBin(X) in the semigroup Bin(X) of all binary systems on a set X, and show that if $(X, \bullet) \in ZBin(X)$, then $x \neq y$ implies $\{x, y\} = \{x \bullet y, y \bullet x\}$. Moreover, we show that a groupoid $(X, \bullet) \in ZBin(X)$ if and only if it is a locally-zero groupoid.

1. Preliminaries

The notion of the semigroup $(Bin(X), \Box)$ was introduced by H. S. Kim and J. Neggers ([2]). Given binary operations "*" and "•" on a set X, they defined a product binary operation " \Box " as follows: $x\Box y := (x * y) • (y * x)$. This in turn yields a binary operation on Bin(X), the set of all groupoids defined on X turning $(Bin(X), \Box)$ into a semigroup with identity (x * y = x), the left-zero-semigroup, and an analog of negative one in the right-zero-semigroup.

Theorem 1.1 ([2]). The collection $(Bin(X), \Box)$ of all binary systems (groupoids or algebras) defined on X is a semigroup, i.e., the operation \Box as defined in general is associative. Furthermore, the left-zero-semigroup is an identity for this operation.

Example 1.2 ([2]). Let $(R, +, \cdot, 0, 1)$ be a commutative ring with identity and let L(R) denote the collection of groupoids (R, *) such that for all $x, y \in R$

x * y = ax + by + c,

where $a, b, c \in R$ are fixed constants. We shall consider such groupoids to be *linear groupoids*. Notice that a = 1, b = c = 0 yields $x * y = 1 \cdot x = x$, and thus the left-zero-semigroup on R is a linear groupoid. Now, suppose that (R, *) and (R, \bullet) are linear groupoids where x * y = ax + by + c and $x \bullet y = dx + ey + f$. Then $x \Box y = d(ax + by + c) + e(ay + bx = c) + f = (da + eb)x + (db + ea)y + (d + e)c + f$, whence $(R, \Box) = (R, *)\Box(R, \bullet)$ is also a linear groupoid, i.e., $(L(R), \Box)$ is a semigroup with identity.

©2011 The Korean Mathematical Society

Received January 7, 2010.

²⁰¹⁰ Mathematics Subject Classification. 20N02.

Key words and phrases. center, locally-zero, Bin(X).

Example 1.3 ([2]). Suppose that in Bin(X) we consider all those groupoids (X, *) with the orientation property: $x * y \in \{x, y\}$ for all x and y. Thus, x * x = x as a consequence. If (X, *) and (X, \bullet) both have the orientation property, then for $x \Box y = (x * y) \bullet (y * x)$ we have the possibilities: x * x = x, y * y = y, $x * y \in \{x, y\}$ and $y * x \in \{x, y\}$, so that $x \Box y \in \{x, y\}$. It follows that if OP(X) denotes this collection of groupoids, then $(OP(X), \Box)$ is a subsemigroup of $(Bin(X), \Box)$. In a sequence of papers Nebeský ([3, 4, 5]) has sought to associate with graphs (V, E) groupoids (V, *) with various properties and conversely. He defined a travel groupoid (X, *) as a groupoid satisfying the axioms: (u * v) * u = u and (u * v) * v = u implies u = v. If one adds these two laws to the orientation property, then (X, *) is an OP-travel-groupoid. In this case u * v = v implies v * u = u, i.e., $uv \in E$ implies $vu \in E$, i.e., the digraph (X, E) is a (simple) graph if $uu \notin E$, with u * u = u. Also, if $u \neq v$, then u * v = u implies (u * v) * v = u * v = u is impossible, whence u * v = v and $uv \in E$, so that (X, E) is a complete (simple) graph.

2. The center of Bin(X) protect

Let ZBin(X) denote the collection of elements (X, \bullet) of Bin(X) such that $(X, *) \Box (X, \bullet) = (X, \bullet) \Box (X, *), \forall (X, *) \in Bin(X)$, i.e., $ZBin(X) = \{(X, \bullet) \in Bin(X) | (X, *) \Box (X, \bullet) = (X, \bullet) \Box (X, *), \forall (X, *) \in Bin(X) \}$. We call ZBin(X) the *center* of the semigroup Bin(X).

Proposition 2.1. The left-zero-semigroup and the right-zero-semigroup on X are both in ZBin(X).

Proof. Given a groupoid (X, *), let (X, \bullet) be a left-zero-semigroup. Then $(x \bullet y) * (y \bullet x) = x * y = (x * y) \bullet (y * x)$ for all $x, y \in X$, proving $(X, \bullet) \in ZBin(X)$. Similarly, it holds for the right-zero-semigroup.

Proposition 2.2. If $(X, \bullet) \in ZBin(X)$, then $x \bullet x = x$ for all $x \in X$.

Proof. If $(X, \bullet) \in ZBin(X)$, then $(X, \bullet) \Box (X, *) = (X, *) \Box (X, \bullet)$ for all $(X, *) \in Bin(X)$. Let $(X, *) \in Bin(X)$ defined by x * y = a for any $x, y \in X$ where $a \in X$. Then $(x \bullet y) * (y \bullet x) = a$ and $(x * y) \bullet (y * x) = a \bullet a$ for any $x, y \in X$. Hence we obtain $a \bullet a = a$. If we change (X, *) in Bin(X) so that x * y = b for every $x, y \in X$ and b is any other element of X, then we find that $a \bullet a = a$ for any $a \in X$. \Box

Any set can be well-ordered by well-ordering principle, and a well-ordered set is linearly ordered. With this notion we prove the following.

Theorem 2.3. If $(X, \bullet) \in ZBin(X)$, then $x \neq y$ implies $\{x, y\} = \{x \bullet y, y \bullet x\}$.

Proof. Let (X, <) be a linearly ordered set and let $(X, *) \in Bin(X)$ be defined by

(1)
$$x * y := \min\{x, y\}, \ \forall x, y \in X.$$

Then we have the following:

(2)
$$(x * y) \bullet (y * x) = \begin{cases} x & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$$

Similarly, we have

(3)
$$(x \bullet y) * (y \bullet x) = \min\{x \bullet y, y \bullet x\} \in \{x \bullet y, y \bullet x\}.$$

If $(X, \bullet) \in ZBin(X)$, then x < y implies $x \in \{x \bullet y, y \bullet x\}$ for all $x, y \in X$. Similarly, if we define $(X, *) \in Bin(X)$ by $x * y := \max\{x, y\}$ for all $x, y \in X$, then x < y implies $y \in \{x \bullet y, y \bullet x\}$ for all $x, y \in X$ when $(X, \bullet) \in ZBin(X)$. In any case, we obtain that if $(X, \bullet) \in ZBin(X)$, then

(4)
$$x, y \in \{x \bullet y, y \bullet x\}.$$

We consider four cases: (i) $x < y, x \bullet y < y \bullet x$; (ii) $x < y, y \bullet x < x \bullet y$; (iii) $y < x, x \bullet y < y \bullet x$; (iv) $y < x, y \bullet x < x \bullet y$. Routine calculations give us the conclusion that $\{x, y\} = \{x \bullet y, y \bullet x\}$.

Proposition 2.4. Let $(X, \bullet) \in ZBin(X)$. If $x \neq y$ in X, then $(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zero-semigroup.

Proof. Assume that (X, \bullet) is not a left-zero-semigroup and $x \neq y$ in X. Then (X, \bullet) has a subtable:

$$\begin{array}{c|cc} \bullet & x & y \\ \hline x & x & y \\ y & a & y \end{array}$$

where $a \in \{x, y\}$. Note that $x \bullet x = x, y \bullet y = y$ by Proposition 2.2. Let $(X, *) \in Bin(X)$ such that X has a subtable:

$$\begin{array}{c|ccc} * & x & y \\ \hline x & x & x \\ y & x & y \\ \end{array}$$

Since $(X, \bullet) \in ZBin(X)$, we have $(x * y) \bullet (y * x) = (x \bullet y) * (y \bullet x)$ and hence $x \bullet x = y * a$. If a = x, then $x \bullet x = y * x = x$. If a = y, then $x = x \bullet x = y * y = y$, a contradiction. Hence (X, \bullet) should have a subtable:

$$\begin{array}{c|ccc} \bullet & x & y \\ \hline x & x & y \\ \hline y & x & y \end{array}$$

This means (X, \bullet) should be a right-zero-semigroup. Similarly, if (X, \bullet) is not a right-zero-semigroup, then it must have a 2 × 2 table of a left-zero-semigroup.

Proposition 2.5. If $(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zero-semigroup for any $x \neq y$ in X, then $(X, \bullet) \in ZBin(X)$.

165

Proof. Given $(X, *) \in Bin(X)$, let $x \neq y$ in X. Consider $(x * y) \bullet (y * x)$ and $(x \bullet y) * (y \bullet x)$. If we assume that $(\{x, y\}, \bullet)$ is a left-zero-semigroup, then $(x * y) \bullet (y * x) = x * y = (x \bullet y) * (y \bullet x)$. Similarly, if we assume that $(\{x, y\}, \bullet)$ is a right-zero-semigroup, then $(x * y) \bullet (y * x) = y * x = (x \bullet y) * (y \bullet x)$. Hence $(X, \bullet) \in ZBin(X)$.

Example 2.6. Let $X := \{a, b, c\}$ with the following table:

Then (X, \bullet) is neither a left-zero-semigroup nor a right-zero-semigroup, while it has the following subtables:

By applying Proposition 2.5, we can see that $(X, \bullet) \in ZBin(X)$.

Proposition 2.7. Let Ab(X) be the collection of all commutative binary systems on X. Then $(Ab(X) \cap ZBin(X), \Box)$ is a right ideal of $(ZBin(X), \Box)$.

Proof. Let $(X, \bullet) \in ZBin(X)$ and $(X, *) \in (Ab(X) \cap ZBin(X))$. Then by Proposition 2.2, we have $x \Box y = (x * y) \bullet (y * x) = (x * y) \bullet (x * y) = x * y$. Also, by Proposition 2.2, we get $y \Box x = (y * x) \bullet (x * y) = (y * x) \bullet (y * x) = y * x$. Therefore, $(X, *) \Box (X, \bullet) \in (Ab(X) \cap ZBin(X))$ and so $(Ab(X) \cap ZBin(X))$ $\Box ZBin(X) \subseteq (Ab(X) \cap ZBin(X))$. \Box

3. Locally-zero groupoids

A groupoid (X, \bullet) is said to be *locally-zero* if (i) $x \bullet x = x$ for all $x \in X$; (ii) for any $x \neq y$ in X, $(\{x, y\}, \bullet)$ is either a left-zero-semigroup or a right-zero-semigroup.

Using Propositions 2.2, 2.4 and 2.5 we obtain the following.

Theorem 3.1. A groupoid $(X, \bullet) \in ZBin(X)$ if and only if it is a locally-zero groupoid.

Given any two elements $x, y \in X$, there exists exactly one left-zero-semigroup and one right-zero-semigroup, and so if we apply Theorem 3.1 we have the following corollary.

Corollary 3.2. If |X| = n, there are $2^{\binom{n}{2}}$ different (but may not be isomorphic) locally-zero groupoids.

166

For example, if $n = 3$, there are $2^3 = 8$ such groupoids, i.e.,																	
	٠	a	b	c		•	a	b	c		٠	a	b	c	•	a	b
	a	a	a	a		a	a	a	a		a	a	a	c	a	a	b
	b	b	b	b		b	b	b	c		b	b	b	b	b	a	b
								,									

$c \mid$	c	c	c	c	c	b	c	c	a	c	c	c	c	c	c
						_								_	
•	a	b	c	•	a	b	c	•	a	b	c	٠	a	b	c
a	a	b	c	a	a	a	c	 a	a	b	a	a	a	b	c
b	a	b	c	b	b	b	c	b	a	b	c	b	a	b	b
$egin{array}{c} a \\ b \\ c \end{array}$	a	b	c	c	a	b	c	c	c	b	c	c	a	c	c

Corollary 3.3. The collection of all locally-zero groupoids on X forms a subsemigroup of $(Bin(X), \Box)$.

Proof. Let $x \neq y$ in X. If $(\{x, y\}, \bullet)$ is a left-zero-semigroup and $(\{x, y\}, *)$ is a right-zero semigroup, then $x \Box y = (x \bullet y) * (y \bullet x) = x * y = y, y \Box x = (y \bullet x) * (x \bullet y) = y * x = x$, i.e., $(\{x, y\}, \Box)$ is a right-zero-semigroup. Similarly, we can prove the other three cases, i.e.,

where L and R denote the "left-zero-semigroup" and the "right-zero-semigroup", respectively. This proves that the collection of all locally-zero groupoids on X forms a subsemigroup of $(Bin(X), \Box)$.

Using Corollary 3.3, we can see that $(X, \bullet) \Box(X, *)$ belongs to the center ZBin(X) of Bin(X) for any $(X, \bullet), (X, *) \in ZBin(X)$.

Proposition 3.4. Not all locally-zero groupoids are semigroups.

Proof. Consider (X, \bullet) where $X := \{a, b, c\}$ and " \bullet " is given by the following table:

$$\begin{array}{c|cccc} \bullet & a & b & c \\ \hline a & a & a & c \\ b & b & b & b \\ c & a & c & c \end{array}$$

Then it is easy to see that (X, \bullet) is locally-zero. Consider the subtables:

and notice that $(\{a, b\}, \bullet)$, $(\{a, c\}, \bullet)$ and $(\{b, c\}, \bullet)$ are a left-, a right- and a left-zero-semigroup, respectively. But $(a \bullet b) \bullet c = a \bullet c = c$, while $a \bullet (b \bullet c) = a \bullet b = a$. Hence (X, \bullet) fails to be a semigroup and the result follows. \Box

c

a

b

Proposition 3.5. Let (X, \bullet) be a locally-zero groupoid. If (X, \bullet) is a semigroup, then it is either a left-zero-semigroup or a right-zero-semigroup.

Proof. Suppose that (X, \bullet) is a semigroup. Then $(x \bullet y) \bullet z = x \bullet (y \bullet z)$ for all $x, y, z \in X$. By Theorem 3.1, $(X, \bullet) \in ZBin(X)$, and then by Proposition 2.4, $(\{x, y\}, \bullet)$ is either a left- or a right-zero-semigroup for any $x \neq y$. In fact, $(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are also either a left- or a right-zero-semigroup for any $x \neq z$ and any $y \neq z$, respectively. Assume that $(\{x, y\}, \bullet), (\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a left-, a right- and a left-zero-semigroup, respectively. Then, $(x \bullet y) \bullet z = x \bullet z = z$ while $x \bullet (y \bullet z) = x \bullet y = x$, a contradiction. Similarly, this leads to a contradiction if we assume that $(\{x, y\}, \bullet), (\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a right-, a left- and a right-zero-semigroup, respectively. Now suppose that $(\{x, y\}, \bullet)$, $(\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a left-, a left- and a right-zerosemigroup, respectively. Then, $(y \bullet x) \bullet z = y \bullet z = z$ while $y \bullet (x \bullet z) =$ $y \bullet x = y$, a contradiction. Moreover, this leads to a contradiction if we assume that $(\{x, y\}, \bullet), (\{x, z\}, \bullet)$ and $(\{y, z\}, \bullet)$ are a right-, a right- and a left-zerosemigroup, respectively. Hence, the only two other cases are when all three subgroupoids are either all left- or all right-zero-semigroups. Therefore, (X, \bullet) is either a left- or a right-zero-semigroup.

Proposition 3.6. Let (X, \bullet) be a locally-zero groupoid. Then

$$(X, \bullet) \Box (X, \bullet) = (X, \Box)$$

is the left-zero-semigroup on X.

Proof. Suppose that $(\{x, y\}, \bullet)$ is the right-zero-semigroup. Then $x \Box y = (x \bullet y) \bullet (y \bullet x) = y \bullet x = x$. On the other hand, if $(\{x, y\}, \bullet)$ is the left-zero-semigroup, then $x \Box y = (x \bullet y) \bullet (y \bullet x) = x \bullet y = x$. Thus in both cases, $x \Box y = x$ for all $x \in X$ making (X, \Box) the left-zero-semigroup. \Box

References

- [1] R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, New York, 1958.
- H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. 45 (2008), no. 4, 651–661.
- [3] L. Nebeský, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48(123) (1998), no. 4, 701–710.
- [4] _____, A tree as a finite nonempty set with a binary operation, Math. Bohem. **125** (2000), no. 4, 455–458.
- [5] _____, Travel groupoids, Czechoslovak Math. J. 56(131) (2006), no. 2, 659-675.

Department of Mathematics

UNIVERSITY OF ALABAMA

TUSCALOOSA, AL, 35487-0350, USA

E-mail address: hiba.fayoumi@ua.edu