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MULTIVALUED VERSIONS OF A BOLZANO’S THEOREM

Jong-Sook Bae and Seong-Hoon Cho

Abstract. The intermediate value theorem for a continuous real valued
function is a kind of Bolzano’s theorem. Similar results also hold for

compact, monotone or accretive mappings in Banach spaces. In this
paper we give multivalued versions of Bolzano’s theorem.

1. Introduction

Recently Morales [17] established a close connection between a classical
Bolzano’s theorem from real analysis and recent works about monotone op-
erator theory on reflexive Banach spaces. The Bolzano’s theorem is a kind of
intermediate value theorem stated as in Dauben [7].

Bolzano’s Theorem (1817). Let f : [−r, r] → R be a continuous function
satisfying the following boundary condition

(1) x · f(x) > 0 for |x| = r.

Then there exists a solution x0 ∈ [−r, r] of the equation f(x) = 0.

The existence of zeros of nonlinear mappings involving monotone operators
has been widely studied. Among other things concerning the study of the
existence of zeros under the boundary condition such as (1), we find the work
of Vainberg and Kachurovskii [22], Minty [15, 16], Browder [5] and Shinbrot
[20]. For related boundary conditions, we mention the work of Brézis et al. [3],
Kachurovskii [12], Leray and Lions [14], and Rockafellar [19]. Also we remind
the work of Morales [17], in which he gave a brief description of how the original
problem has evolved in time passing through various generalizations for the
last 30 years. However Morales [17] only studied such works for singlevalued
mappings.

The goal of this paper is to give the existence of zeros of multivalued map-
pings, including monotone type mappings.
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2. Zeros of set-contractions

Let X be a Banach space. We will use B(x, r) to denote the open ball
centered at x with radius r, where x ∈ X and r > 0. For a subset K of X, K
and ∂K will denote the closure and the boundary of K, respectively. If K is
convex and x ∈ K, the inward set IK(x) of K at x is defined by

IK(x) = {x+ t(y − x) | y ∈ K, t ≥ 0}.

Let X∗ be the dual space of X. The dual pairing ⟨x, x∗⟩ will be used for
x ∈ X and x∗ ∈ X∗ instead of x∗(x). The normalized duality mapping J :
X → 2X

∗
is defined by

J(x) = {x∗ ∈ X∗ | ⟨x, x∗⟩ = ∥x∥2, ∥x∗∥ = ∥x∥}.

Lemma 2.1. For r > 0 and ∥x∥ = r,

IB(0,r)(x) = ∩x∗∈J(x){w | ⟨w − x, x∗⟩ ≤ 0}.

Proof. Let u ∈ IB(0,r) and x∗ ∈ J(x). Then there are y ∈ B(0, r) and t ≥ 0

such that u = x+ t(y − x). Now compute

⟨u− x, x∗⟩ = t⟨y − x, x∗⟩ ≤ t(∥y∥∥x∥ − ∥x∥2) ≤ 0.

Since ∩x∗∈J(x){w | ⟨w − x, x∗⟩ ≤ 0} is closed we conclude IB(0,r)(x) ⊂
∩x∗∈J(x){w | ⟨w − x, x∗⟩ ≤ 0}.

Now assume u /∈ IB(0,r)(x). Then by Hahn-Banach theorem, there exists

x∗ ∈ X∗ such that

∥x∗∥ = ∥x∥ and sup{⟨z, x∗⟩ : z ∈ IB(0,r)(x)} < ⟨u, x∗⟩.

Then for each ∥y∥ ≤ r and t > 0, we have

⟨x+ t(y − x), x∗⟩ < ⟨u, x∗⟩.

This means ⟨y − x, x∗⟩ ≤ 0, and hence we have

⟨x, x∗⟩ = sup{⟨y, x∗⟩ : ∥y∥ ≤ r} = ∥x∗∥r = ∥x∥2.

Finally we conclude x∗ ∈ J(x) and ⟨u−x, x∗⟩ > 0, so that u /∈ ∩x∗∈J(x){w :
⟨w − x, x∗⟩ ≤ 0}. □

To prove our results we need some fixed point theorems. First of all we
mention Fan’s result [10, 11], that every upper semicontinuous weakly inward
nonempty closed convex valued multivalued mapping defined on a nonempty
compact convex subset of a locally convex Hausdorff vector space has a fixed
point. Let CC(X) (KC(X)) be the set of nonempty closed convex (compact
convex, respectively) subsets of X.

By using Fan’s result and Lemma 2.1, we have the following.
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Proposition 2.1. Let T : B(0, r) → CC(Rn) be an upper semicontinuous
mapping such that

(2) inf
u∈T (x)

⟨u− x, x⟩ ≤ 0 for x ∈ ∂B(0, r).

Then T has a fixed point.

Proof. For ϵ > 0, let Tϵ(x) = T (x)− ϵx for x ∈ B(0, r). Then for x ∈ ∂B(0, r),

inf
u∈Tϵ(x)

⟨u− x, x⟩ ≤ −ϵr2 < 0.

Hence there exists w ∈ Tϵ(x) such that ⟨w−x, x⟩ ≤ 0 so that w ∈ IB(0,r)(x)

by Lemma 2.1. By Fan’s result, Tϵ has a fixed point, say xϵ. Then we have
(1 + ϵ)xϵ ∈ T (xϵ). By selecting a sequence {ϵn} that converges to zero, we
may assume that {xϵn} converges to some x̄ ∈ B(0, r). Then since T is upper
semicontinuous, we have x ∈ T (x). □

Note that the boundary condition (2) is equivalent to the following condition:

d(T (x), IB(0,r)(x)) = 0 for x ∈ ∂B(0, r),

where d(A,B) = inf{∥a− b∥a ∈ A, b ∈ B}. Therefore, the method of the proof
of Proposition 2.1 enables to obtain the following.

Collorary 2.1. Let X be a locally convex Hausdorff topological vector space,
and K be a nonempty compact convex subset of X. Let T : K → CC(X) be an
upper semicontinuous mapping satisfying

dU (T (x), IK(x)) = 0 for x ∈ K

for every symmetric convex neighborhood U of the origin, where dU is the semi-
norm generated by U . Then T has a fixed point.

Proof. Let TU (x) = T (x) + U . Then easy computation shows that TU (x) ∩
IK(x) ̸= ∅ for each x ∈ K. Hence by Fan’s result, there exists a point xU ∈ K
such that xU ∈ T (xU ) + U . Then by choosing a convergent net {xU}, we can
have a fixed point of T . □

Let α be the Kuratowski measure of noncompactness defined on the family
of bounded subsets of a Banach space X, and let D be a bounded subset of X.
A mapping T : D → KC(X) is a strict set-contraction if there is a constant
k < 1 such that α(T (A)) ≤ kα(A) for every A ⊂ D. Also T is said to be a
set-contraction if α(T (A)) < α(A) for every A ⊂ D with α(A) > 0. According
to Deimling [9] (also see [2]) every upper semicontinuous set-contractive weakly
inward mapping defined on a closed convex bounded subset of a Banach space
has a fixed point.

By using Lemma 2.1, we can reformulated Deimling’s result as follows.
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Proposition 2.2. Let X be a Banach space and T : B(0, r) → X be an upper
semicontinuous set-contraction satisfying

(3) min
u∈T (x)

max
x∗∈J(x)

⟨u− x, x∗⟩ ≤ 0 for x ∈ ∂B(0, r).

Then T has a fixed point.

Proof. For each x ∈ ∂B(0, r), by (3) there exists w ∈ T (x) such that ⟨w −
x, x∗⟩ ≤ 0 for all x∗ ∈ J(x). Therefore, by Lemma 2.1, w ∈ IB(0,r)(x). By

applying Deimling’s result, we complete the proof. □

In the case that the domain is not a ball the set-contractive condition of T
may be replaced by the strict set-contractive one and the boundary condition
by that of Leray-Schauder. Here is a version of these cases, which is appeared
in [8].

Proposition 2.3 (Theorem 24.4, [8]). Let D be a nonempty bounded open sub-
set of a Banach space X, and let T : D → KC(X) be an upper semicontinuous
strict set-contraction satisfying

(4) x0 + λ(x− x0) /∈ T (x) for x ∈ ∂D, λ > 1 and some x0 ∈ D.

Then T has a fixed point in D.

If the domainD is convex, then Proposition 2.3 is still true for set-contractive
mappings.

Proposition 2.4. Let D be a nonempty bounded open convex subset of a Ba-
nach space X, and let T : D → KC(X) be an upper semicontinuous set-
contraction satisfying condition (4). Then T has a fixed point in D.

Proof. Let us choose a sequence {rn} such that 0 < rn < 1 and lim rn = 1.
Define Tn : D → KC(X) by Tn(x) = (1 − rn)x0 + rnT (x). Then each Tn
is a strict set-contraction. And also each Tn satisfies the boundary condition
(4). In fact, suppose that there are x ∈ ∂D, y ∈ Tn(x) and λ > 1 such that
y = x0 + λ(x− x0). Then y = (1− rn)x0 + rnu for some u ∈ T (x), and hance
u = x0 + λr−1

n (x− x0) where λr
−1
n > 1, which contradicts to (4).

Therefore by Proposition 2.3, we have xn ∈ Tn(xn) for some xn ∈ D. Now
choose yn ∈ T (xn) such that xn = (1−rn)x0+rnyn. Then an easy computation
gives α({yn}) = α({xn}). But since F is a set-contraction, we have α({xn}) =
0.

Otherwise we have

α({xn}) = α({yn}) ≤ α(T ({xn})) < α({xn}),

which is a contradiction.
Now we may assume {xn} converges to some x ∈ D, so that {yn} also

converges to x. Since T is upper semicontinuous we have x ∈ T (x). □
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Proposition 2.5. Let F : B(0, r) → CC(Rn) be an upper semicontinuous
mapping satisfying

sup
y∈F (x)

⟨y, x⟩ ≥ δ for all x ∈ ∂B(0, r),

where δ > 0. Then B(0, δr ) ⊂ F (B(0, r)). In particular, the equation 0 ∈ F (x)

has a solution in B(0, r).

Proof. Let v ∈ B(0, δr ) and define T (x) = x + v − F (x) for x ∈ B(0, r). Now

compute for x ∈ ∂B(0, r)

inf
u∈T (x)

⟨u− x, x⟩ = inf
y∈F (x)

⟨v − y, x⟩

= ⟨v, x⟩ − sup
y∈F (x)

⟨y, x⟩

≤ δ

r
· r − δ = 0.

By Proposition 2.1, we have a fixed point x in B(0, r) of T . Since x ∈
x+ v − F (x), we have v ∈ F (x). □

Our first multivalued version of Bolzano’s theorem is the following theorem.

Theorem 2.2. Let F : B(0, r) → CC(Rn) be an upper semicontinuous map-
ping satisfying

(5) sup
y∈F (x)

⟨y, x⟩ ≥ 0 for all x ∈ ∂B(0, r).

Then the equation 0 ∈ F (x) has a solution in B(0, r).

Proof. For ϵ > 0, let Fϵ(x) = ϵx+ F (x). Then by Proposition 2.5, we have an
xϵ ∈ B(0, r) such that 0 ∈ ϵxϵ+F (xϵ). By choosing a sequence {ϵn} converging
to 0 and {xϵn} converges to some x ∈ B(0, r), we can obtain 0 ∈ F (x). □

We note that the condition (5) is equivalent to the condition

d(x− F (x), IB(0,r)(x)) = 0 for all x ∈ ∂B(0, r).

By applying Corollary 2.1, directly, T (x) = x−F (x) has a fixed point. Also
note that if F is singlevalued, then Theorem 2.2 reduces to Theorem 1 of [17].

In general Banach spaces, the domain of a given mapping may not be ex-
pected to be compact. In this case, we need some compactness conditions on
the mapping to obtain our results.

Here is an analogous result of Proposition 2.5.

Proposition 2.6. Let X be a Banach space and let F : B(0, r) → KC(X)
be an upper semicontinuous mapping satisfying T (x) = x − F (x) is a set-
contraction, and

max
y∈F (x)

min
x∗∈J(x)

⟨y, x∗⟩ ≥ δ for all x ∈ ∂B(0, r) and some δ > 0.
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Then B(0, δr ) ⊂ F (B(0, r)). In particular, the equation 0 ∈ F (x) has a solution

in B(0, r).

Proof. For v ∈ B(0, δr ), define Tv(x) = x + v − F (x). Then as in the proof of
Proposition 2.5, one can easily show that minu∈Tv(x) maxx∗∈J(x)⟨u−x, x∗⟩ ≤ 0

for each x ∈ ∂B(0, r). Therefore by applying Proposition 2.2, we have an
x ∈ B(0, r) such that x ∈ x+ v − F (x), so that v ∈ F (x). □

As a consequence of Proposition 2.6 obtain a multivalued version of Corollary
2 in [17] in general Banach spaces, which is an extension to Hilbert spaces of
what Lax [13] calls the intermediate value theorem.

Collorary 2.3. Let X be a Banach space and let F : B(0, r) → KC(X) be an
upper semicontinuous mapping satisfying T (x) = x−F (x) is a set-contraction,
and

x ∈ F (x) for x ∈ ∂B(0, r).

Then B(0, r) ⊂ F (B(0, r)).

Proof. For x ∈ ∂B(0, r),

max
y∈F (x)

min
x∗∈J(x)

⟨y, x∗⟩ ≥ min
x∗∈J(x)

⟨x, x∗⟩ ≥ r2.

Therefore, by Proposition 2.6, we have B(0, r) ⊂ F (B(0, r)). □

Next we give a Banach space version of Theorem 2.2 as follows.

Theorem 2.4. Let X be a Banach space and let F : B(0, r) → KC(X) be an
upper semicontinuous mapping satisfying T (x) = x−F (x) is a set-contraction,
and

max
y∈F (x)

min
x∗∈J(x)

⟨y, x∗⟩ ≥ 0 for all x ∈ ∂B(0, r).(6)

Then the equation 0 ∈ T (x) has a solution in B(0, r).

Proof. One can easily show that the condition (6) implies the boundary con-
dition (3). Hence by Proposition 2.2, T has a fixed point x in B(0, r), so that
0 ∈ F (x). □

Next we give the second multivalued version of the Bolzano’s theorem. We
begin with bounded convex domains whose interior is nonempty.

Theorem 2.5. Let D be a nonempty bounded open convex subset of a Banach
space X with 0 ∈ D. Suppose F : D → KC(X) is an upper semicontinuous
mapping satisfying T (x) = x− F (x) is a set-contraction, and

min
y∈F (x)

max
x∗∈J(x)

⟨y, x∗⟩ ≥ 0 for all x ∈ ∂D.(7)

Then the equation 0 ∈ F (x) has a solution in D.
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Proof. It suffices to show that T satisfies the condition (4) for x0 = 0. In fact,
assume that λx ∈ T (x) for some x ∈ ∂D and λ > 1. Then λx = x− y for some
y ∈ F (x). For each x∗ ∈ J(x), we have

⟨y, x∗⟩ = (1− λ)∥x∥2 < 0,

which contradicts to (7).
Then by applying Proposition 2.4, x ∈ T (x) for some x ∈ D, that is, 0 ∈

F (x). □

In Theorem 2.5, if T (x) = x − F (x) is a strict set-contraction, then the
convexity condition can be omitted.

Theorem 2.6. Let D be a nonempty bounded open subset of a Banach space
X with 0 ∈ D. Suppose that F : D → KC(X) is an upper semicontinuous
mapping satisfying:

(i) T (x) = x− F (x) is a strict set-contraction;
(ii) the boundary condition (7) holds.

Then the equation 0 ∈ F (x) has a solution in D.

Proof. As in the proof Theorem 2.5, (ii) implies the boundary condition (4).
By applying Proposition 2.3, we have a fixed point of T , which is a solution of
the equation 0 ∈ T (x). □

3. Zeros of monotone mappings

A natural question is whether one can replace the strict set-contractive con-
dition by a different type of condition. As a result monotonicity conditions have
captured a great deal of interest to solve the equations (see [3, 12, 15, 16, 19]).

Let D be a subset of a (real) Banach space X, and let F : D → 2X
∗
be a

multivalued mapping. Then
F is said to be monotone if, for all x, y ∈ D

⟨y − x, v − u⟩ ≥ 0 for all u ∈ F (x), v ∈ F (y).

F is said to be semi-monotone if, for all x, y ∈ D and u ∈ F (x), there is
v ∈ F (y) such that

⟨y − x, v − u⟩ ≥ 0.

For example, if T is a multivalued nonexpansive mapping defined on a subset
of a Hilbert space, then I − T is semi-monotone (see [1]).
F is said to be strongly-monotone if there exists a constant c > 0 such that

for all x, y ∈ D, u ∈ F (x) and v ∈ F (y)

⟨y − x, v − u⟩ ≥ c∥y − x∥2.

The following lemma comes from definitions directly.
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Lemma 3.1. Let F : D ⊂ X → KC(X∗).
(i) F is monotone if and only if for all x, y ∈ D,

max
u∈F (x)

⟨y − x, u⟩ ≤ min
v∈F (y)

⟨y − x, v⟩.

(ii) F is semi-monotone if and only if for all x, y ∈ D,

min
u∈F (x)

⟨y − x, u⟩ ≤ min
v∈F (y)

⟨y − x, v⟩.

The following lemma comes from Lemma 1 in [1].

Lemma 3.2. Let X be a (real) Banach space, D a nonempty bounded subset of
X and let C be a nonempty (strongly) compact subset of X∗. Then the function

f(x) = min
u∈C

⟨x, u⟩

is weakly uniformly continuous on D.

The following variational inequality is well known and comes from KKM
theory.

Proposition 3.1. Let K be a nonempty compact convex subset of a Hausdorff
topological vector space. Let ϕ and ψ be two real-valued functions defined on
K ×K satisfying

(a) ϕ(x, y) ≤ ψ(x, y) for all (x, y) ∈ K ×K, and ψ(x, x) ≤ 0 for all x ∈ K;
(b) for each fixed x ∈ K, ϕ(x, y) is a lower semicontinuous function of y on

K;
(c) for each fixed y ∈ K, the set {x ∈ X|ψ(x, y) > 0} is convex.

Then there exists a point y0 ∈ K such that ϕ(x, y0) ≤ 0 for all x ∈ K.

Proof. Apply Theorem 2 of [1] for X = X0 = K. □

Throughout the last part of this paper we may assume that the reflexive Ba-
nach spaceX and its dualX∗ are both locally uniformly convex after renorming
(see [21]). This fact implies that the normalized duality mapping J is single-
valued and strictly monotone.

Theorem 3.1. Let X be a reflexive (real) Banach space, and let G be a bounded
open subset of X with 0 ∈ G. Suppose that F : co(G) → KC(X∗) is semi-
monotone and upper semicontinuous along line segments on co(G) to the weak∗

topology on X∗ satisfying

(8) min
u∈F (x)

⟨x, u⟩ > 0 for all x ∈ ∂G.

Then the equation 0 ∈ F (x) has a solution in G.

Proof. Let K = co(G) and let us define ϕ, ψ : K ×K → R by

ϕ(x, y) = min
u∈F (x)

⟨y − x, u⟩,
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ψ(x, y) = min
v∈F (y)

⟨y − x, v⟩.

Now equip X with the weak topology. Then all conditions (a)-(c) in Propo-
sition 3.1 are satisfied. Actually, (a) comes from semi-monotonicity of F and
Lemma 3.1(ii), and (b) comes from Lemma 3.2. Also an easy computation
gives the condition (c).

Therefore by Proposition 3.1, there exists a point y0 ∈ K = co(G), such that

(9) ϕ(x, y0) = min
u∈F (x)

⟨y0 − x, u⟩ ≤ 0 for all x ∈ K.

Next we claim that

(10) min
v∈F (y0)

⟨y0 − x, v⟩ ≤ 0 for all x ∈ K.

To prove (10), let x ∈ K be fixed. Define zt = tx + (1 − t)y0 for t ∈ [0, 1].
Since K is convex, each zt ∈ K. By applying (9), we get

min
u∈F (zt)

⟨y0 − zt, u⟩ = t min
u∈F (zt)

⟨y0 − x, u⟩ ≤ 0 for all t ∈ (0, 1],

and hence we get

(11) min
u∈F (zt)

⟨y0 − x, u⟩ ≤ 0 for all t ∈ (0, 1].

On the contrary, assume minv∈F (y0)⟨y0 − x, v⟩ > 0. Then F (y0) is a subset
of weak∗ open set U = {w ∈ X∗ | ⟨y0 − x,w⟩ > 0}. Since F is upper semi-
continuous along line segments to the weak∗ topology, there is some t0 ∈ (0, 1)
such that F (zt0) ⊂ U . As F (zt0) is compact,

min
u∈F (zt0 )

⟨y0 − x, u⟩ > 0

which contradicts to (11). Therefore (10) is true.
Now we will prove y0 ∈ G. If y0 /∈ G, then y0 = λy for some y ∈ ∂G and

λ ≥ 1. If λ = 1, then because of 0 ∈ G, by (10) we have

min
v∈F (y0)

⟨y0, v⟩ ≤ 0,

which contradicts to (8). If λ > 1, then by (9) we have

min
u∈F (y)

⟨y0 − y, u⟩ = (λ− 1) min
u∈F (y)

⟨y, u⟩ ≤ 0,

which also contradicts to (8). Therefore we conclude y0 ∈ G.
Since G is open, from (10) we can prove

(12) min
v∈F (y0)

⟨x, v⟩ ≤ 0 for all x ∈ X.

Indeed, if x ∈ X, then y0 − tx ∈ G for some t > 0. By (10), we have

min
v∈F (y0)

⟨y0 − (y0 − tx), v⟩ ≤ 0.

Since t > 0, we have minv∈F (y0)⟨x, v⟩ ≤ 0.
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Since X is reflexive, by Hahn-Banach theorem, we know that (12) implies
0 ∈ F (y0). □

Since every monotone mapping is semimonotone, we have the following corol-
lary.

Collorary 3.2. Let X be a reflexive (real) Banach space, and let G be a
bounded open subset of X with 0 ∈ G. Suppose that F : co(G) → KC(X∗)
is monotone and upper semicontinuous along line segments on co(G) to the
weak∗ topology on X∗ satisfying condition (8). Then the equation 0 ∈ F (x) has
a solution in G.

Theorem 3.3. Let X be a reflexive (real) Banach space, and let G be a bounded
open subset of X with 0 ∈ G. Suppose that F : co(G) → KC(X∗) is monotone
and upper semicontinuous satisfying

min
u∈F (x)

⟨x, u⟩ ≥ 0 for all x ∈ ∂G.

Then the equation 0 ∈ F (x) has a solution in G.

Proof. Let Fϵ = F + ϵJ , where J is the duality mapping and ϵ > 0. Then Fϵ

satisfies the boundary condition (8) on ∂G, and Fϵ is still monotone. Therefore
by Corollary 3.2, the equation 0 ∈ Fϵ(x) has a solution in G.

By selecting a sequence {ϵn} in (0, 1) that converges to zero, we find a
sequence {xn} in G such that

0 ∈ F (xn) + ϵnJ(xn).

Therefore there exists a sequence {yn} such that yn ∈ F (xn) and yn +
ϵnJ(xn) = 0 for all n ≥ 1. Since F is monotone, for all m,n

⟨xm − xn, ym − yn⟩ ≥ 0,

and so we get

⟨xm − xn, ϵmJ(xm)− ϵnJ(xn)⟩ ≤ 0.

Then as in the proof of Lemma 1 of [17], we conclude xn → x for some x ∈ G.
In this case since yn → 0, we have 0 ∈ F (x) by the upper semicontinuity of
F. □

The boundary condition (8) can be weakened in Corollary 3.2 if F is lower
semicontinuous.

Proposition 3.2. Let X be a reflexive (real) Banach space, and let G be a
bounded open subset of X with 0 ∈ G. Suppose that F : co(G) → KC(X∗) is
monotone and lower semicontinuous along line segments on co(G) to the weak∗

topology on X∗ satisfying

(13) max
u∈F (x)

⟨x, u⟩ > 0 for all x ∈ ∂G.

Then the equation 0 ∈ F (x) has a solution in G.
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Proof. Essentially the process of the proof are similar as in the proof of Theorem
3.1.

Let K = co(G) and for (x, y) ∈ K ×K,

ϕ(x, y) = max
u∈F (x)

⟨y − x, u⟩, ψ(x, y) = min
v∈F (y)

⟨y − x, v⟩.

Then by Lemma 3.1(i), we can apply Proposition 3.1 such that there exists a
point y0 ∈ K satisfying

(14) ϕ(x, y0) = max
u∈F (x)

⟨y0 − x, u⟩ ≤ 0 for all x ∈ K.

Now we claim that

(15) max
v∈F (y0)

⟨y0 − x, v⟩ ≤ 0 for all x ∈ K.

To prove (15), let x ∈ K be fixed. Define zt = tx + (1 − t)y0 for t ∈ [0, 1].
Since each zt ∈ K. By applying (14), we get

max
u∈F (zt)

⟨y0 − zt, u⟩ = t max
u∈F (zt)

⟨y0 − x, u⟩ ≤ 0 for all t ∈ (0, 1],

and hence we have

(16) max
u∈F (zt)

⟨y0 − x, u⟩ ≤ 0 for all t ∈ (0, 1].

Suppose that (15) dose not hold. Then we have maxv∈F (y0)⟨y0 − x, v⟩ > 0,
so that F (y0) ∩ U ̸= ∅, where U = {w ∈ X∗ | ⟨y0 − x,w⟩ > 0} is a weak∗ open
set of X∗. Since F is lower semicontinuous along line segments on co(G) to the
weak∗ topology on X∗, there is some t0 ∈ (0, 1) such that F (zt0) ∩ U ̸= ∅. As
a result we have

max
u∈F (zt0 )

⟨y0 − x, u⟩ > 0

which contradicts to (16). Therefore (15) holds. As in the proof of Theorem
3.1, by applying (13) and (15), one can easily prove y0 ∈ G. Above all, since
minu∈F (x)⟨y0−x, u⟩ ≤ maxu∈F (x)⟨y0−x, u⟩, inequalities (9) and (10) still hold.
Therefore by the same way as in the proof of Proposition 3.1, we can prove
0 ∈ F (y0). □

Analogous to Theorem 3.3, we obtain the following theorem and the proof
is essentially same.

Theorem 3.4. Let X be a reflexive (real) Banach space, and let G be a bounded
open subset of X with 0 ∈ G. Suppose that F : co(G) → KC(X∗) is monotone
and continuous from co(G) to weak∗ topology on X∗ satisfying

max
u∈F (x)

⟨x, u⟩ ≥ 0 for all x ∈ ∂G.

Then the equation 0 ∈ F (x) has a solution in G.
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Domain invariance theorems for singlevalued strongly-monotone mappings
were studied by many authors (see [4, 15, 17, 18]). By using Corollary 3.2
or Proposition 3.2, we will obtain an invariance of domain theorem for locally
strongly-monotone multivalued mappings.

Theorem 3.5. Let G be an open subset of a reflexive (real) Banach space X,
and let F : G → KC(X∗) be a locally strongly-monotone mapping. If F is
either upper semicontinuous or lower semicontinuous along line segments on
G to the weak∗ topology on X∗, then F (G) is open in X∗.

Proof. Let z0 ∈ G and w0 ∈ F (z0). By letting F (z) = F (z + z0)−w0, we may
assume that 0 ∈ G and 0 ∈ F (0). Since F is locally strongly-monotone, there
exists r > 0 such that B(0, r) ⊂ G and for some c > 0

⟨y − x, v − u⟩ ≥ c∥y − x∥2 for all x, y ∈ B(0, r), u ∈ F (x), v ∈ F (y).

Let w ∈ X∗ with ∥w∥ < cr, and let F1(z) = F (z) − w for z ∈ B(0, r). For
x ∈ ∂B(0, r), we have

max
u∈F1(x)

⟨x, u⟩ ≥ min
u∈F1(x)

⟨x, u⟩

= min
u∈F (x)

⟨x, u− w⟩

= min
u∈F (x)

{⟨x− 0, u− 0⟩ − ⟨x,w⟩}

≥ c∥x∥2 − ∥x∥∥w∥ > 0.

By applying Corollary 3.2 or Proposition 3.2, we know that w ∈ F (z) has
a solution in B(0, r). Hence B(0, cr) ⊂ F (B(0, r)), which shows that F (G) is
open. □
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