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HEREDITARY HEMIMORPHY OF {−k}-HEMIMORPHIC

TOURNAMENTS FOR k ≥ 5

Moncef Bouaziz, Youssef Boudabbous, and Nadia El Amri

Abstract. Let T = (V,A) be a tournament. With every subset X of V

is associated the subtournament T [X] = (X,A ∩ (X ×X)) of T , induced
by X. The dual of T , denoted by T ∗, is the tournament obtained from

T by reversing all its arcs. Given a tournament T
′
= (V,A

′
) and a non-

negative integer k, T and T
′
are {−k}-hemimorphic provided that for all

X ⊂ V , with |X| = k, T [V −X] and T
′
[V −X] or T ∗[V −X] and T

′
[V −X]

are isomorphic. The tournaments T and T
′
are said to be hereditarily

hemimorphic if for all subset X of V , the subtournaments T [X] and T
′
[X]

are hemimorphic. The purpose of this paper is to establish the hereditary
hemimorphy of the {−k}-hemimorphic tournaments on at least k + 7

vertices, for every k ≥ 5.

1. Introduction

A tournament T = (V,A) (or (V (T ), A(T ))) consists of a finite vertex set V
with an arc set A of ordered pairs of distinct vertices, satisfying: for x, y ∈ V ,
with x ̸= y, (x, y) ∈ A if and only if (y, x) ̸∈ A, in this case we write x → y.
Given two sets of vertices A and B, write A → B to mean that there is an arc
from any element of A to any element of B. For singletons, just write a → B for
{a} → B and with A → b as well. The cardinality of T is that of V . This car-
dinality |V | is also denoted by |T |. For each x ∈ V , we denote by N+(x) (resp.
N−(x)) the set {y ∈ V : (x, y) ∈ A} (resp. {y ∈ V : (y, x) ∈ A}). The score of
a vertex x (in T ), denoted by sT (x), is the cardinality of N+(x). The dual of T
is the tournament T ∗ = (V,A∗) defined by: for all x, y ∈ V , (y, x) ∈ A∗ if and
only if (x, y) ∈ A. With every subset X of V is associated the subtournament
T [X] = (X,A∩ (X ×X)) of T induced by X. The subtournament T [V −X] is
also denoted by T −X. For each x ∈ V , the subtournament T −{x} is denoted
by T − x. Say that a set W of vertices satisfies a property if the subtourna-
ment T [W ] enjoys it. A transitive tournament or a total order is a tournament
T such that for all x, y, z ∈ V (T ), if (x, y) ∈ A(T ) and (y, z) ∈ A(T ), then
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(x, z) ∈ A(T ). If T = ({x1, . . . , xn}, A) is a total order such that: (xi, xj) ∈ A
if and only if i < j, T is said to be the total order: x1 < · · · < xn and x1

(resp. xn) is denoted by min(T ) (resp. max(T )). In another respect, given two

tournaments T = (V,A) and T
′
= (V

′
, A

′
), a bijection f from V onto V

′
is

an isomorphism from T onto T ′ provided that for any x, y ∈ V , (x, y) ∈ A if

and only if (f(x), f(y)) ∈ A
′
. The tournaments T and T

′
are then said to be

isomorphic, which is denoted by T ≃ T
′
, if there exists an isomorphism from

T onto T
′
. A tournament T is said to be selfdual if T and T ∗ are isomorphic.

A hemimorphism [13] from T onto T
′
is either an isomorphism from T onto

T
′
or an isomorphism from T ∗ onto T

′
. Consider two tournaments T = (V,A)

and T
′
= (V,A

′
), with |V | = n ≥ 2, a non-negative integer k and a set F of

non-negative integers. The tournaments T and T
′
are {k}-hypomorphic (resp.

{k}-hemimorphic), whenever for every subset X of V such that |X| = k, the

subtournaments T [X] and T
′
[X] are isomorphic (resp. hemimorphic). Say

that T and T
′
are {−k}-hypomorphic (resp. {−k}-hemimorphic), whenever

for every subset X of V such that |X| = n − k, the subtournaments T [X]

and T
′
[X] are isomorphic (resp. hemimorphic). We call the tournament T

{−k}-selfdual if it is {−k}-hypomorphic to T ∗. The tournament T is {k}-
monomorphic (resp. {−k}-monomorphic) whenever for every subsets X,Y of
V such that |X| = |Y | = k (resp. |X| = |Y | = n − k), the subtournaments

T [X] and T [Y ] are isomorphic. The tournaments T and T
′
are F -hypomorphic

(resp. F -hemimorphic), if for every k ∈ F , the tournaments T and T
′
are {k}-

hypomorphic (resp. {k}-hemimorphic). The tournament T is F -reconstructible
[15, 16, 17] (resp. F -half-reconstructible [13]) provided that every tournament
F -hypomorphic (resp. F -hemimorphic) to T is isomorphic (resp. hemimor-
phic) to T . The {1, . . . , k}-hypomorphy (resp. {1, . . . , k}-hemimorphy) is also
denoted by the (≤ k)-hypomorphy (resp. (≤ k)-hemimorphy). The tournament
T is called (≤ k)-selfdual, if it is (≤ k)-hypomorphic to T ∗. The tournaments

T and T
′
are hereditarily isomorphic if for all X ⊆ V , T [X] and T

′
[X] are

isomorphic. Note that for the tournaments, the notion of the “hereditary iso-
morphy” was firstly given by K. B. Reid and C. Thomassen in [23]. From that,
we introduce in this paper, the notion of “hereditary hemimorphy” in this way:
the tournaments T and T

′
are hereditarily hemimorphic if for all X ⊆ V , T [X]

and T
′
[X] are hemimorphic.

Y. Boudabbous and G. Lopez [7] showed that if two tournaments T and T
′

are (≤ 7)-hemimorphic, then T and T
′
are hereditarily hemimorphic. Thus, by

the combinatorial lemma introduced by M. Pouzet [21], it follows immediately

that: Given an integer k ≥ 7, if two tournaments T and T
′
defined on the

same vertex set V , with |V | ≥ k + 7, are {−k}-hemimorphic, then T and T
′

are hereditarily hemimorphic. The aim of this paper is to prove the hereditary
hemimorphy of the {−k}-hemimorphic tournaments on at least k + 7 vertices
where k ∈ {5, 6}.
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The text is organized as follows: Section 2 recalls some results concerning
hereditary isomorphy and hereditary hemimorphy. Then in Section 3: first,
we give some definitions (strong connectivity, indecomposability,. . . ), second,
we recall Gallai’s decomposition and finally, we give an overview about tour-
naments without diamonds. We consider Lopez’s difference classes of (≤ k)-
hypomorphy in Section 4. In Section 5, we recall and establish some results
used in the proof of the main theorem. In the last section we prove our result.

2. Hereditary isomorphy, hereditary hemimorphy

The (≤ k)-reconstruction was introduced by R. Fräıssé in 1970 [10]. In
1972, G. Lopez [15, 16] showed that the tournaments (indeed the finite binary
relations) are (≤ 6)-reconstructible. One may deduce the next corollary.

Corollary 2.1 ([15, 16, 17]). Two (≤ 6)-hypomorphic tournaments are hered-
itarily isomorphic.

In 1993, J. G. Hagendorf raised the (≤ k)-half-reconstruction and solved it
with G. Lopez [13]. In fact, they proved that if two finite binary relations R

and R
′
are (≤ 12)-hemimorphic, then either R and R

′
are (≤ 6)-hypomorphic

or R∗ and R
′
are (≤ 6)-hypomorphic. From that, they obtained in particular

that the finite binary relations are (≤ 12)-half-reconstructible. Concerning the
tournaments, in 1995, Y. Boudabbous and G. Lopez [7] showed that they are
(≤ 7)-half-reconstructible.

The four corollaries below follow directly from the preceding results.

Corollary 2.2. Two (≤ 7)-hemimorphic tournaments are hereditarily hemi-
morphic.

Corollary 2.3. If T and T
′
are (≤ 7)-hemimorphic tournaments, then either

T
′
and T are (≤ 6)-hypomorphic or T

′
and T ∗ are (≤ 6)-hypomorphic.

Corollary 2.4. Two tournaments T and T
′
are hereditarily hemimorphic if

and only if either T
′
and T are (≤ 6)-hypomorphic or T

′
and T ∗ are (≤ 6)-

hypomorphic.

Corollary 2.5. Two tournaments T and T
′
are hereditarily hemimorphic if

and only if either T
′
and T are hereditarily isomorphic or T

′
and T ∗ are hered-

itarily isomorphic.

Later, M. Pouzet [1, 2] introduced the {−k}-reconstruction. P. Ille [14] (resp.
G. Lopez and C. Rauzy [19]) proved that the tournaments on at least 11 (resp.
10) vertices are {−5}-reconstructible (resp. {−4}-reconstructible).

Y. Boudabbous improved these results by the following one that we fre-
quently use in this paper.

Theorem 2.6 ([5]). Let k ∈ {4, 5}. Two {−k}-hypomorphic tournaments,
which have at least 6 + k vertices, are hereditarily isomorphic.
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We use also the following lemma obtained by H. Bouchaala and Y. Boudab-
bous.

Lemma 2.7 ([4]). If a tournament T without diamonds on at least 9 vertices
is {−3}-hypomorphic to T ∗, then T is hereditarily isomorphic to T ∗.

In 1998, Y. Boudabbous and J. Dammak [6] introduced the {−k}-half-
reconstruction and proved that: For k ∈ {5, 6}, the tournaments which have at
least 7 + k vertices are {−k}-half-reconstructible.

Notation 2.8. Given a tournament T = (V,A), X ⊂ V and a tournament H,
we denote by n(T,H;X) := |{F ⊆ V,X ⊂ F and T [F ] is hemimorphic to H}|.

The “Combinatorial lemma” due to M. Pouzet [21], makes a link between
the problems of (≤ k)-reconstruction (resp. (≤ k)-half-reconstruction) and
those of the {−k}-reconstruction (resp. {−k}-half-reconstruction) and allows
us to deduce the next corollaries.

Corollary 2.9 ([21]). Given two tournaments T = (V,A) and T
′
= (V,A

′
)

for each integer 0 < p < |V |, if T and T
′
are {p}-hypomorphic (resp. {p}-

hemimorphic), then for q = 1, . . . , min(p, |V | − p), T and T
′
are {q}-hypo-

morphic (resp. {q}-hemimorphic).

Corollary 2.10 ([22]). Given positive integers n, p, h such that 0 ≤ p < n and
1 ≤ h ≤ n − p, a tournament H with h vertices and two {−p}-hemimorphic

tournaments T = (V,A) and T
′
= (V,A

′
) with |V | = n. Then for all subset X

of V which has at most p vertices, n(T,H;X) = n(T
′
,H;X).

Using Corollary 2.2 and Corollary 2.9, we find the following result.

Corollary 2.11. Given an integer k ≥ 7 and two tournaments T and T
′

defined on the same vertex set V , with |V | ≥ k + 7, if T and T
′
are {−k}-

hemimorphic, then T and T
′
are hereditarily hemimorphic.

The goal of the present work is to study the above result where k = 5. We
obtain the following theorem.

Theorem 2.12. Let T and T
′
be two tournaments defined on the same vertex

set V , with |V | ≥ 12. If T and T
′
are {−5}-hemimorphic, then T and T

′
are

hereditarily hemimorphic.

Consider two {−6}-hemimorphic tournaments T and T
′
defined on the same

vertex set V , with |V | ≥ 13, a subset X of V such that |X| ≤ 7 and a vertex

y ∈ V −X. By applying the above result on the two subtournaments T
′ − y

and T − y, we deduce that T
′
[X] and T [X] are hemimorphic. Thus, T

′
and T

are (≤ 7)-hemimorphic and then by Corollary 2.2, we obtain the following.

Corollary 2.13. Let T and T
′
be two tournaments defined on the same vertex

set V , with |V | ≥ 13. If T and T
′
are {−6}-hemimorphic, then T and T

′
are

hereditarily hemimorphic.
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3. Indecomposability, Gallai’s decomposition and tournament
without diamonds

3.1. Strong connectivity. Indecomposability. Interval partition. Di-
lation

Given a tournament T = (V,A), define a relation R on V as follows: for all
x ∈ V , xRx and for all x, y ∈ V such that x ̸= y, xR y if there exists two
sequences x0 = x, . . . , xn = y and y0 = y, . . . , yp = x of vertices of T fulfilling:
for all i ∈ {0, . . . , n − 1}, xi → xi+1 and for all j ∈ {0, . . . , p − 1}, yj → yj+1.
The relation R is an equivalence relation whose classes are called the strongly-
connected components of T . Say then that a tournament is strongly con-
nected when it admits at most a single strongly connected component. For
example, the tournament C3 = ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}) is strongly con-
nected. However, the two tournaments D1 = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 1),
(1, 4), (2, 4), (3, 4)}) and D2 = D∗

1 , are non-strongly connected and admit two
strongly connected components: {1, 2, 3} and {4}. Each tournament isomor-
phic to C3 (resp. to D1 or D2), is a 3-cycle (resp. a diamond). Given a
tournament T = (V,A), a subset I of V is an interval [10] of T provided that
for all x of (V − I), we have either x → I or I → x. Clearly, the empty set,
the singletons of V and the set V are intervals of T , called trivial intervals. A
tournament is then indecomposable if all its intervals are trivial. For instance,
a diamond D has a unique non-trivial interval I with D[I] is a 3-cycle. The
vertex of D which is not in I, is said the center of D. A partition P of V is
an interval partition of T if all its elements are intervals of T . It results that
the elements of P may be considered as the vertices of a new tournament, the
quotient T/P = (P,A/P ) of T by P , defined in the following way: for any
X ̸= Y ∈ P , (X,Y ) ∈ A/P if (x, y) ∈ A for x ∈ X and y ∈ Y . On the other
hand, a subset X of V is a strong interval [8, 11] of T provided that X is an
interval of T and for every interval Y of T , if X ∩ Y ̸= ∅, then X ⊆ Y or
Y ⊆ X. In the remaining part of this work, for each tournament T = (V,A)
with |V | ≥ 2, P (T ) denotes the family of maximal, strong intervals of T , under
the inclusion, amongst the strong intervals of T distinct from V . For example,
if T is not strongly connected, the partition P (T ) presents the family of the
strongly connected components of T [8]. From the definition of a strong in-
terval, note that P (T ) realizes an interval partition of T . Given a tournament
H = ({1, . . . , n}, A) where n ≥ 1, with every i ∈ {1, . . . , n} is associated a
tournament Ti = (Vi, Ai) with |Vi| ≥ 1 such that the Vi’s are mutually dis-
joint. The lexicographical sum of the Ti’s over H is the tournament denoted
by H(T1, . . . , Tn) and defined on the union of Vi’s as follows: given u ∈ Vi and
v ∈ Vj , where i, j ∈ {1, . . . , n}, (u, v) is an arc of H(T1, . . . , Tn) if either i = j
and (u, v) ∈ Ai or i ̸= j and (i, j) ∈ A. We can also say that the tournament
H(T1, . . . , Tn) is obtained from the tournament H by dilating each vertex i of
H by the tournament Ti.
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3.2. Gallai’s decomposition

At this stage, we present the Gallai’s decomposition which consists in the
following examination of the quotient T/P (T ).

Theorem 3.1 ([8, 11]). Let T be a tournament of cardinality |T | ≥ 2.

(1) The tournament T is not strongly connected if and only if T/P (T ) is
a total order.

(2) The tournament T is strongly connected if and only if T/P (T ) is inde-
composable and |P (T )| ≥ 3.

This definition plays an important role in this paper.

Definition 3.2. Let T be a tournament defined on a vertex set V with |V | ≥ 2.

We consider the partition P̃ (T ) of V defined as follows:

• If T is strongly connected, P̃ (T ) = P (T ).

• If T is not strongly connected, P̃ (T ) is defined in the following way:

For A ⊆ V , A ∈ P̃ (T ), if and only if either A ∈ P (T ) and |A| ≥ 2, or
A is a maximal union of consecutive vertices of the total order T/P (T )
which are singletons.

We make the following remark.

Remark 3.3. Let T be a non-strongly connected tournament with at least 2
vertices.

• T is a total order if and only if |P̃ (T )| = 1.

• If T is not a total order, T/P̃ (T ) is a total order: X1 < · · · < Xk where
k ≥ 2. The set X1 (resp. Xk) is called the first (resp. last) component
of T .

Notation 3.4. Let a tournament T with at least 2 vertices and an integer

k ≥ 1. We denote by P̃k(T ) the set of elements of P̃ (T ) of cardinality k.

A. Boussäıri, G. Lopez, S. Thomassé, and P. Ille [8] established the following
theorem called “the inversion theorem”.

Theorem 3.5 ([8]). Given an indecomposable tournament T with at least three
vertices, the only tournaments which are {3}-hemimorphic to T are T and T ∗.

Remark 3.6 ([8]). Let T and T
′
be two {3}-hemimorphic tournaments with at

least two vertices.
i) P (T ) = P (T

′
).

ii) T is strongly connected if and only if T
′
is strongly connected.

Moreover, if T is strongly connected, then either T
′
/P̃ (T ) = T/P̃ (T ) or

T
′
/P̃ (T ) = T ∗/P̃ (T ).

We can easily check that:
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Remark 3.7. If T and T
′
are two (≤ 4)-hypomorphic non-strongly connected

tournaments with at least two vertices, then P̃ (T ) = P̃ (T
′
) and T

′
/P̃ (T ) =

T/P̃ (T ).

3.3. Tournament without diamonds

A tournament T is called without diamonds if none of its subtournaments
is a diamond. For example, for each integer h ≥ 1 the tournament T2h+1

defined on {0, . . . , 2h} as follows: for all i, j ∈ {0, . . . , 2h}, i → j, if there exists
k ∈ {0, . . . , h}, such that j = i + k modulo (2h + 1), is indecomposable and
without diamonds [12, 18].

The morphology of the tournaments without diamonds is described by (P.
Ille and C. Gnanvo [12]) and (G. Lopez and C. Rauzy [18]). They obtained the
following characterization.

Theorem 3.8 ([12, 18]). A tournament T is without diamonds if and only if T
is either a total order or a lexicographical sum of total orders over some T2h+1,
with h ≥ 1.

The following remark follows immediately from Theorem 3.8 and Remark
3.6.

Remark 3.9. Let T be a tournament without diamonds.

(1) T is (≤ 5)-selfdual.
(2) If T is not strongly connected, then T is a total order.
(3) Each subtournament of T is either strongly connected or a total order.
(4) If T is indecomposable and |T | ≥ 3, then T is isomorphic to some

T2h+1, with h ≥ 1.

(5) If T is not a total order and if T
′
is a tournament (≤ 3)-hypomorphic

to T , then:

• There exists h ≥ 1 such that T/P̃ (T ) is isomorphic to some T2h+1.

• Either T
′
/P̃ (T ) = T/P̃ (T ) or T

′
/P̃ (T ) = T ∗/P̃ (T ).

• T and T
′
are hereditarily isomorphic, if T

′
/P̃ (T ) = T/P̃ (T ), oth-

erwise T ∗ and T
′
are hereditarily isomorphic.

4. Difference class

The definition below introduced by G. Lopez in 1972 presents an important
tool in many reconstruction problems.

Definition 4.1 ([15, 16]). Let T = (V,A) and T
′
= (V,A

′
) be two {2}-

hemimorphic tournaments. The difference relation of T and T
′
is the equiva-

lence relation denoted by DT,T ′ defined on V as follows: for all x ∈ V , xDT,T ′x
and for all x, y ∈ V , such that x ̸= y, xDT,T ′ y if there exists a sequence

x0 = x, x1, . . . , xn = y of some elements of V such that for all i ∈ {0, . . . , n−1},
(xi, xi+1) ∈ A if and only if (xi, xi+1) ̸∈ A

′
. The equivalence classes of DT,T ′

are called the difference classes of T and T
′
.
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We use the following lemmas in the present work.

Lemma 4.2 ([7, 17]). Let T and T
′
be two (≤ 3)-hemimorphic tournaments

and C a class of the equivalence DT,T ′ . Then

(1) C is an interval of T and T
′
.

(2) The difference classes constitute an interval partition P of T and T
′

such that T/P = T
′
/P .

Lemma 4.3 ([18]). Let T and T
′
be two (≤ 4)-hypomorphic tournaments and

C a class of the equivalence DT,T ′ . Then

(1) T [C] is a tournament without diamonds.
(2) T [C] is (≤ 5)-selfdual.

(3) T
′
[C] and T ∗[C] are hereditarily isomorphic.

(4) If there exists X ⊆ C such that T [X] is a 3-cycle, then T
′
[X] = T ∗[X].

Lemma 4.4 ([7]). Let T = (V,A) and T
′
= (V,A

′
) be two (≤ 5) hemimorphic

tournaments, C a class of the equivalence DT,T ′ and X ⊆ C such that T [X] is

a diamond. Then T
′
[X] ≃ T ∗[X].

After characterizing the difference classes under the hypothesis of the (≤ 4)-
hypomorphy in [18], G. Lopez and C. Rauzy established in [19] the following
result.

Theorem 4.5 ([19]). The tournaments defined on n ≥ 7 vertices are {4, n−1}-
reconstructible.

This corollary is an immediate consequence of the above theorem.

Corollary 4.6. Given an integer k ≥ 1 and two tournaments T and T
′
on

n ≥ 6 + k vertices, if T and T
′
are {4, n− k}-hypomorphic, then T and T

′
are

isomorphic.

5. Some preliminary results

In this section, we recall and establish some results which will be used in
the proof of Theorem 2.12.

We begin with the following definition.

Definition 5.1 ([9]). Let T = (V,A) be a tournament and X be a proper
subset of V such that |X| ≥ 3 and T [X] is indecomposable. The following
subsets of V −X are defined.

• Ext(X) is the set of x ∈ V −X such that T [X∪{x}] is indecomposable.
• ⟨X⟩ is the set of x ∈ V −X such that X is an interval of T [X ∪ {x}].
• For each u ∈ X, X(u) is the set of x ∈ V −X such that {u, x} is an
interval of T [X ∪ {x}].

The results below are due to Ehrenfeucht and Rozenberg.
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Proposition 5.2 ([9]). Given a tournament T = (V,A) and a proper subset
X of V such that |X| ≥ 3 and T [X] is indecomposable, the family {X(u), u ∈
X} ∪ {Ext(X), ⟨X⟩} constitutes a partition of V − X (Some elements of this
family can be empty).

Lemma 5.3 ([9]). Let T = (V,A) be an indecomposable tournament with |V | ≥
5. For every subset X of V such that |X| ≥ 3, |V − X| ≥ 2 and T [X] is
indecomposable, there exist two different elements x, y of V − X such that
T [X ∪ {x, y}] is indecomposable.

As for every vertex x of an indecomposable tournament T with at least three
vertices there exists a 3-cycle passing by x, then using the preceding lemma we
deduce the following corollary.

Corollary 5.4 ([9]). Let T = (V,A) be an indecomposable tournament with
|V | ≥ 5 and x ∈ V .

(1) If |V | is even, there exists y ∈ V − {x} such that T − {y} is indecom-
posable.

(2) If |V | is odd, there exist y ̸= z ∈ V − {x} such that T − {y, z} is
indecomposable.

The next two lammas are due to (M. Bouaziz and Y. Boudabbous) and J.
W. Moon, respectively.

Lemma 5.5 ([3]). Let p ≥ 2 be an integer, R and R
′
be two tournaments

defined on the same vertex set {1, . . . , p}, f be an isomorphism from R onto

R
′
and H (resp. H

′
) be a tournament defined on a vertex set which is disjoint

from {1, . . . , p}. Given i ∈ {1, . . . , p}, and G (resp. G
′
) be the tournament

obtained from R (resp. R
′
) by dilating the vertex i (resp. f(i)) by H (resp.

H
′
). Then

(i) G ≃ G
′
if and only if H ≃ H

′
.

(ii) If sR(i) ̸= sR∗(i), H∗ ≃ H
′
and H is not selfdual, then G∗ ̸≃ G

′
.

Lemma 5.6 ([20]). Let T = (V,A) be a strongly connected tournament such
that |V | = n ≥ 3. Then, for all k ∈ {3, . . . , n} and for all x ∈ V , there exists
a subset X of V such that x ∈ X, |X| = k and the subtournament T [X] is
strongly connected.

We continue to establish the following 7 lemmas.

Lemma 5.7. Let T and T
′
be two (≤ 4)-hypomorphic non-strongly connected

tournaments such that T/P̃ (T ) is the total order X1 < · · · < Xp where p ≥ 2.

If T and T
′
are {−1}-hemimorphic, then there exists x ∈ X1 ∪Xp fulfilling the

following:
(i) T − {x} and T

′ − {x} are isomorphic.
(ii) If x ∈ X1 and T [X1] is a total order (resp. x ∈ Xp and T [Xp] is a total

order), then x = min(X1) (resp. x = max(Xp)).



608 MONCEF BOUAZIZ, YOUSSEF BOUDABBOUS, AND NADIA EL AMRI

Proof. By Remark 3.7, P̃ (T
′
) = P̃ (T ) and T

′
/P̃ (T ) = T/P̃ (T ). In the fol-

lowing three cases, we will choose a vertex x of T such that by denoting Y
(resp. Z) the first (resp. last) component of T − x and T

′ − x, we have: either
|Y | ̸= |Z| or one of the subtournaments T [Y ] and T [Z] is a total order and the
other is strongly connected with at least three vertices. We then deduce that
T ∗−x and T

′ −x are not isomorphic and then T −x and T
′ −x are isomorphic.

• If both T [X1] and T [Xp] are strongly connected such that |X1| ≥ 3 and
|Xp| ≥ 3, we consider x ∈ X1, if |X1| ≤ |Xp|, otherwise x ∈ Xp.

• If both T [X1] and T [Xp] are total orders, we consider x = min(X1), if
|X1| ≤ |Xp|, otherwise x = max(Xp).

• If one of T [X1], T [Xp] is a total order and the other is strongly con-
nected on at least 3 vertices. By considering Xp in the place of X1, we
may assume that T [X1] is a total order and T [Xp] is strongly connected
with |Xp| ≥ 3. In this case if |X1| ≥ 2 we consider x = min(X1). Sup-
pose now that |X1| = 1. If |Xp| = 3, we consider x ∈ Xp, otherwise
using Lemma 5.6 we consider x ∈ Xp such that T [Xp−{x}] is strongly
connected. □

Lemma 5.8. Let T and T
′
be two non-strongly connected tournaments defined

on the same vertex set and Q be an interval partition of T and T
′
such that

T/Q and T
′
/Q are two equal total orders. If f is an isomorphism from T onto

T
′
, then for all X ∈ Q, f(X) = X.

The proof of the above lemma is obvious.

Lemma 5.9. Given two (≤ 5)-hemimorphic non-strongly connected tourna-

ments T and T
′
with at least 2 vertices. Then P̃ (T

′
) = P̃ (T ) and (T

′
/P̃ (T ) =

T/P̃ (T ) or T
′
/P̃ (T ) = T ∗/P̃ (T )).

Proof. Since T is a non-strongly connected tournament, then its Gallai’s de-
composition is presented as follows: T = C(T1, . . . , Tk) such that k ≥ 2, C is
the total order 1 < 2 < · · · < k and for all i ∈ {1, . . . , k}, Ti is a strongly
connected tournament defined on a vertex set Si. If T is a total order, then
the result is obvious, otherwise, we distinguish two cases.

• Case 1. If k = 2. Clearly, P (T ) = P̃ (T ) and then by Remark

3.6, P̃ (T ) = P̃ (T
′
). Therefore, T/P̃ (T ) = T

′
/P̃ (T ) or T ∗/P̃ (T ) =

T
′
/P̃ (T ).

• Case 2. If k ≥ 3. We deduce the result from the hemimorphy be-
tween the two tournaments T [{ai, bi, ci, aj , al}] and T

′
[{ai, bi, ci, aj , al}]

where i, j, l are three different elements of {1, . . . , k}, aj ∈ Sj , al ∈ Sl

and ai, bi, ci are three elements of Si such that T [{ai, bi, ci}] is a 3-cycle.
□

The corollary below follows directly from Corollary 2.9, Remark 3.6 and
Lemma 5.9.
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Corollary 5.10. Given two {−5}-hemimorphic tournaments T and T
′
on at

least 10 vertices, then P̃ (T ) = P̃ (T
′
) and (T/P̃ (T ) = T

′
/P̃ (T ) or T ∗/P̃ (T ) =

T
′
/P̃ (T )).

Lemma 5.11. If two tournaments T = (V,A) and T
′
= (V,A

′
) are (≤ 5)-

hemimorphic, then T and T
′
are (≤ 6)-hemimorphic.

Proof. Let T = (V,A) and T
′
= (V,A

′
) be two (≤ 5)-hemimorphic tourna-

ments. Consider a subset X of V such that |X| = 6 and showing that T [X] and

T
′
[X] are hemimorphic. First, assume that both DT [X],T ′ [X] and DT∗[X],T ′ [X]

have one class. It follows from Lemma 4.4 that T [X] is without diamonds. So,

T
′
[X] and T [X] are (≤ 4)-hypomorphic. Thus, T [X] has no 3-cycle, by Lemma

4.3. Henceforth, T [X] is a total order and then the result is obtained. Second,
assume that DT [X],T ′ [X] has at least two classes. Let C be such a class. From

Lemma 4.2, C is an interval of T [X] and T
′
[X]. As T [X] and T

′
[X] are (≤ 5)-

hemimorphic, it follows that T [C] is without diamonds, by Lemma 4.4. So,

T [C] and T
′
[C] are (≤ 4)-hypomorphic and then they are (≤ 5)-hypomorphic

by Lemma 4.3. As |X| = 6, then for every class C of DT [X],T ′ [X], |C| ≤ 5.

Thus, for each class C of DT [X],T ′ [X], T [C] ≃ T
′
[C] and then T [X] ≃ T

′
[X].

Finally, assume that DT∗[X],T ′ [X] has at least two classes. By replacing T [X]

by T ∗[X] in the second step, we obtain T ∗[X] ≃ T
′
[X]. □

Lemma 5.12. Let an integer p ≥ 1 and a tournament T = (V,A) such that
|V | ≥ p + 2. Then for all x ∈ V there exists a subset B of V − {x} such that
|B| = p and sT−B(x) ̸= sT∗−B(x).

Proof. Let x ∈ V . Considering a set N(x) ∈ {N+(x), N−(x)} such that
|N(x)| = min{|N+(x)|, |N−(x)|}. If |N(x)| < p (resp. |N(x)| ≥ p), we consider
a subset B with p elements of V −{x} such that N(x) ⊂ B (resp. B ⊆ N(x)).
We easily verify that sT−B(x) ̸= sT∗−B(x). □
Notation 5.13. We denote by P each tournament which is a lexicographical
sum C3(T1, T2, T3) where for all i ∈ {1, 2, 3}, Ti is a total order on i vertices.

Remark 5.14.
• The tournaments without diamonds on 6 vertices which are not hemi-
morphic to P are selfdual.

• Let R be a tournament hemimorphic to P and R
′
be a tournament

(≤ 3)-hypomorphic to R. Then either R ≃ R
′
or R∗ ≃ R

′
.

Lemma 5.15. Let T and T
′
be two (≤ 5)-hypomorphic tournaments defined

on a vertex set V such that for all X ⊆ V , if T [X] is hemimorphic to P, then

T
′
[X] is isomorphic to T [X]. Then T and T

′
are (≤ 6)-hypomorphic.

Proof. As T and T
′
are (≤ 5)-hypomorphic, it is sufficient to prove that T and

T
′
are {6}-hypomorphic. Let X ⊆ V such that |X| = 6. If DT [X],T ′ [X] has at
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least two classes, then each of these classes has at most five elements. Thus,
since T and T

′
are (≤ 5)-hypomorphic, then for each class C of DT [X],T ′ [X],

T [C] ≃ T
′
[C]. So T [X] ≃ T

′
[X]. At present, assume that DT [X],T ′ [X] has

only one class. From Lemma 4.3, it follows that T [X] is a tournament with-

out diamonds and T
′
[X] is isomorphic to T ∗[X]. If T [X] is not hemimorphic

to P, then from Remark 5.14, T [X] ≃ T
′
[X], otherwise we conclude by the

hypothesis. □

6. Proof of Theorem 2.12

Using Corollary 5.10, the following result enables us to deduce immediately
Theorem 2.12.

Theorem 6.1. Consider two {−5}-hemimorphic tournaments T and T
′
with

at least 12 vertices.
(i) If T/P̃ (T ) = T

′
/P̃ (T ), then T and T

′
are hereditarily isomorphic.

(ii) If T ∗/P̃ (T ) = T
′
/P̃ (T ), then T ∗ and T

′
are hereditarily isomorphic.

Proof of Theorem 6.1

As by replacing the tournament T by T ∗ in (i), we immediately obtain the
assertion (ii), we have to show in the sequel only the assertion (i). Consider

two {−5}-hemimorphic tournaments T and T
′
defined on the same vertex set

V on n ≥ 12 elements such that T/P̃ (T ) = T
′
/P̃ (T ). Clearly, it is sufficient to

prove that for all X ∈ P̃ (T ), T [X] and T
′
[X] are hereditarily isomorphic. As

the result is obvious when T is a total order, we may assume that |P̃ (T )| ≥ 2.

Lemma 6.2. T and T
′
are (≤ 5)-hypomorphic.

Proof. Notice that by Corollary 2.9, T and T
′
are (≤ 5)-hemimorphic. Since

T
′
/P̃ (T ) = T/P̃ (T ), it is sufficient to prove that for all X ∈ P̃ (T ), T [X] and

T
′
[X] are (≤ 5)-hypomorphic. Let X ∈ P̃ (T ). The two tournaments T [X] and

T
′
[X] are (≤ 4)-hypomorphic. Indeed, since T and T

′
are (≤ 3)-hemimorphic,

then T and T
′
are (≤ 3)-hypomorphic. So, it suffices to show that T [X] and

T
′
[X] are {4}-hypomorphic. Let A ⊆ X such that |A| = 4 and suppose that

T [A] is not isomorphic to T
′
[A]. The (≤ 3)-hypomorphy between T [X] and

T
′
[X] implies that T [A] is necessarily a diamond and T

′
[A] is isomorphic to

T ∗[A]. Let x ∈ V −X. Clearly, the two tournaments T [A∪{x}] and T
′
[A∪{x}]

are not hemimorphic, which contradicts the (≤ 5)-hemimorphy between T and

T
′
. At present, from Lemma 4.2 it is enough to prove that T [C] and T

′
[C] are

(≤ 5)-hypomorphic for each class C of the equivalence DT [X],T ′ [X]. Let C0 be

such a class. Because T [C0] and T
′
[C0] are (≤ 4)-hypomorphic, it follows from

Lemma 4.3 that T [C0] is a (≤ 5)-selfdual tournament and T
′
[C0] and T ∗[C0] are

hereditarily isomorphic. Thus, T [C0] and T
′
[C0] are (≤ 5)-hypomorphic. □
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Lemma 6.3. For all X ∈ P̃ (T ), T [X] and T
′
[X] are isomorphic.

Proof. Since T
′
/P̃ (T ) = T/P̃ (T ) and |P̃ (T )| ≥ 2, then the equivalence relation

DT,T ′ has at least two classes and every class C is an interval of T and T
′
which

is contained in an element X of P̃ (T ). Thus, every element of P̃ (T ) is an union
of some classes of DT,T ′ . So, from Lemma 4.2, it is sufficient to prove that

T [C] and T
′
[C] are isomorphic for every class C of DT,T ′ . Let C be such a

class. It results from Lemmas 4.3 and 6.2 that T [C] is a tournament without
diamonds. We distinguish the following three cases.

Case 1. If |V − C| ≥ 6.

If the tournament T [C] is a total order, then T [C] and T
′
[C] are isomorphic,

otherwise we consider the tournament H = O2 (H1,H2), such that O2 is the
total order 1 < 2, H1 is a tournament on one vertex and H2 ≃ T [C]. Let
(x, a, b, c) ∈ (V − C) × C3 such that T [{a, b, c}] is a 3-cycle. Without loss of

generality we may assume that x → C in T
′
and T . As n(T,H; {x, a, b, c}) ̸=

0, from Corollary 2.10, n(T,H; {x, a, b, c}) = n(T
′
,H; {x, a, b, c}) and then

n(T
′
,H; {x, a, b, c}) ̸= 0. So, there exists Y ⊂ V such that {x, a, b, c} ⊂ Y

and T
′
[Y ] is hemimorphic to H. Let X = {x} ∪ C. We have obligatorily

Y = X. Indeed, if there exists y ∈ Y −X, then we easily verify that x and y
are two diamond’s centers in T

′
[Y ], whereas H has only one diamond’s center.

Thus, T
′
[{x} ∪ C] and T [{x} ∪ C] are hemimorphic. As x → C in T

′
and

T and by Remark 3.9, T [C] and T
′
[C] are strongly connected, it results that

T
′
[{x} ∪ C] and T [{x} ∪ C] are isomorphic and then T

′
[C] ≃ T [C].

Case 2. If |V − C| = 5.
Let (x, a, b, c, d) ∈ C × (V − C)4 a uple of 5 different vertices. Since T [C] is a
tournament without diamonds, every subtournament of T [C] is either strongly
connected or a total order, by Remark 3.9. If the tournament T [C − {x}] is a
total order, then T [C − {x}] and T

′
[C − {x}] are isomorphic, otherwise, as T

′

and T are {−5}-hemimorphic and T [C−{x}] and T
′
[C−{x}] are strongly con-

nected, we necessarily have T −{x, a, b, c, d} ≃ T
′ −{x, a, b, c, d}. In particular,

T [C − {x}] ≃ T
′
[C − {x}]. Hence, T [C] and T

′
[C] are {4,−1}-hypomorphic

and then isomorphic by Theorem 4.5.
Case 3. If 1 ≤ |V − C| ≤ 4.

Let k = 6−|V−C|. Let I and J be two subsets of V such that I ⊂ V−C, J ⊂ C,

|J | = k and |I| = 5−k. If T [C−J ] is a total order, then T [C−J ] ≃ T
′
[C−J ],

otherwise, as |V −(C∪I)| = 1, |I∪J | = 5 and T
′
and T are {−5}-hemimorphic,

we necessarily have T − (I ∪ J) ≃ T
′ − (I ∪ J). So, T [C − J ] ≃ T

′
[C − J ]

and therefore, the two tournaments T [C] and T
′
[C] are {4,−k}-hypomorphic.

Thus, by Corollary 4.6, T [C] ≃ T
′
[C]. □

From Lemmas 6.2 and 6.3 we immediately deduce the following.
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Corollary 6.4. For each X ∈ P̃ (T ) such that 1 ≤ |X| ≤ 6, T
′
[X] and T [X]

are hereditarily isomorphic.

We directly obtain the proof of Theorem 6.1 from Propositions 6.6 and 6.11,
where we discuss the two cases of Gallai’s decomposition of the tournaments.

We need this notation.

Notation 6.5. For all X ⊂ V , if T − X and T
′ − X are hemimorphic, we

denote by fX a hemimorphism between them.

Proposition 6.6. If T is not strongly connected, then for all X ∈ P̃ (T ), T [X]

and T
′
[X] are hereditarily isomorphic.

Proof of Proposition 6.6

This proposition is an immediate consequence of the following three lemmas

where, T is considered non-strongly connected with P̃ (T ) = {X1, X2, . . . , Xk}
such that k ≥ 2 and T/P̃ (T ) is the total order: X1 < · · · < Xk.

Lemma 6.7. If either k ≥ 3 or (k = 2 and min(|X1|, |X2|) ≥ 2), then for all

X ∈ P̃ (T ) such that |X| ≥ 10, T
′
[X] and T [X] are hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that |X| ≥ 10. From Theorem 2.6, it is sufficient

to show that T [X] and T
′
[X] are {−4}-hypomorphic. Given A ⊂ X such that

|A| = 4 and proving that T [X −A] and T
′
[X −A] are isomorphic. If T [X −A]

is a total order, the result is obvious. Let’s assume in the remaining of this
proof that T [X − A] is not a total order. If X ̸∈ {X1, Xk}, as T − A and

T
′ − A are (≤ 4)-isomorphic and {−1}-hemimorphic, then from Lemma 5.7,

there exist x ∈ V −X and an isomorphism f(A∪{x}) from T − (A ∪ {x}) onto
T

′ − (A ∪ {x}). Considering the set Q = {Y − (A ∪ {x});Y ∈ P̃ (T )− {{x}}}.
It is clear that Q is an interval partition of T − (A ∪ {x}) and T

′ − (A ∪ {x})
such that (T − (A∪{x}))/Q and (T

′ − (A∪{x}))/Q are two equal total orders.
Thus, from Lemma 5.8, we deduce that for all Z ∈ Q, f(A∪{x})(Z) = Z, in

particular f(A∪{x})(X −A) = X −A and thus T [X −A] ≃ T
′
[X −A]. Assume

now that X ∈ {X1, Xk}. Clearly, X1 (resp. Xk) is the first component of T

and T
′
(resp. T ∗ and (T

′
)∗). So, when we show the result for only one of

the two cases we deduce immediately the second one by coming back to the
first and interchanging the considered two tournaments and their duals. For
instance, assume in the remaining of this proof that X = X1. As T −A is not
strongly connected, we denote by Y its first component. We may easily see
that if T [X − A] is strongly connected, Y = X − A, otherwise, Y is the first

component of T [X −A] and T
′
[X −A].

We need the following two facts.
Fact 1. If there are j ∈ {2, . . . , k} and x ∈ Xj , such that f(A∪{x}) is an

isomorphism from T−(A∪{x}) onto T
′−(A∪{x}), then T [X−A] ≃ T

′
[X−A].
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Indeed: It is clear that in T − (A ∪ {x}) and T
′ − (A ∪ {x}), we have

(X−A) → (V −(X∪{x})). So, as f(A∪{x}) is an isomorphism from T−(A∪{x})
onto T

′ − (A∪ {x}), we get by Lemma 5.8 that f(A∪{x})(X −A) = X −A and

then T [X −A] ≃ T
′
[X −A].

Fact 2. If T [X − A] is not strongly connected, T [Y ] ≃ T
′
[Y ] and there

exists x ∈ Y such that f(A∪{x}) is an isomorphism from T − (A ∪ {x}) onto

T
′ − (A ∪ {x}), then T [X −A] ≃ T

′
[X −A].

Indeed: It is clear that in T − (A ∪ {x}) and T
′ − (A ∪ {x}), we have

(Y −{x}) → (X−(A∪Y )) → (V −X). So, as f(A∪{x}) is an isomorphism from

T − (A ∪ {x}) onto T
′ − (A ∪ {x}), we get by Lemma 5.8 that f(A∪{x})(X −

(A∪ Y )) = X − (A∪ Y ) and then T [X − (A∪ Y )] ≃ T
′
[X − (A∪ Y )]. Besides,

since T [Y ] ≃ T
′
[Y ], we directly deduce that T [X −A] ≃ T

′
[X −A].

To complete the proof it remains to choose a vertex x of T−A which requires
an isomorphism from T − (A ∪ {x}) and T

′ − (A ∪ {x}), using the cardinality
and the strong connectivity type of their first and last components and then
to conclude it suffices to apply either Fact 1 or Fact 2. The choice of x is
determined as follows:

• If T [Xk] is a total order and T [Y ] is strongly connected such that |Y | ≥ 3,
we consider x ∈ Xk−1 if |Xk| = 1, otherwise x ∈ Xk.

• If T [Y ] and T [Xk] are both total orders, we consider x ∈ Z such that
Z ∈ {Xk, Y } and |Z| = min{|Xk|, |Y |}.

• If T [Xk] is strongly connected such that |Xk| = 3 and T [Y ] is strongly
connected such that |Y | ≥ 1, we consider x ∈ Xk.

• If T [Xk] is strongly connected such that |Xk| = 3 and T [Y ] is a total order
such that |Y | ≥ 2, we consider x ∈ Y .

• If T [Xk] is strongly connected such that |Xk| ≥ 4 and T [Y ] is a total
order, by using Lemma 5.6, we choose x ∈ Xk such that T [Xk−{x}] is strongly
connected.

• If T [Xk] is strongly connected such that |Xk| ≥ 4 and T [Y ] is strongly
connected such that |Y | ≥ 3. In this case if |Y | ̸= |Xk| − 1, using Lemma 5.6,
we consider x ∈ Xk such that T [Xk −{x}] is strongly connected. Otherwise, if

there exists x ∈ Xk such that T
′
[Xk−{x}] ̸≃ T ∗[Y ] or T [Xk−{x}] ̸≃ (T

′
)∗[Y ],

then we conclude by Fact 1. Assume that for all x ∈ Xk, T
′
[Xk−{x}] ≃ T ∗[Y ]

and T [Xk−{x}] ≃ (T
′
)∗[Y ]. Hence, T

′
[Xk] and T [Xk] are {−1}-monomorphic.

In addition, as by Lemma 6.3 there exists an isomorphism g from T [Xk] onto

T
′
[Xk], then for all x ∈ Xk, T [Xk − {x}] ≃ T

′
[Xk − {g(x)}] ≃ T

′
[Xk − {x}].

Thus, (T
′
)∗[Y ] ≃ T ∗[Y ]. So, T [Y ] ≃ T

′
[Y ]. Consequently, if T [X − A] is

strongly connected the result is obvious, otherwise as in T [X−A] and T
′
[X−A],

we have Y → (X − (A ∪ Y )), it is enough to show that T [X − (A ∪ Y )] ≃
T

′
[X − (A ∪ Y )]. Let y ∈ Y . As |Xk| = |Y |+ 1, it is clear that f(A∪{y}) is an

isomorphism from T − (A ∪ {y}) onto T
′ − (A ∪ {y}), and then f(A∪{y})(X −

(A ∪ Y )) = X − (A ∪ Y ). Thus, T [X − (A ∪ Y )] ≃ T
′
[X − (A ∪ Y )]. □
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Lemma 6.8. If either k ≥ 3 or (k = 2 and min{|X1|, |X2|} ≥ 2), then for all

X ∈ P̃ (T ) such that 7 ≤ |X| ≤ 9, T
′
[X] and T [X] are hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that 7 ≤ |X| ≤ 9. As from Lemma 6.2, T [X] and

T
′
[X] are (≤ 5)-hypomorphic, using Corollary 2.1, it is sufficient to demon-

strate that T [X] and T
′
[X] are {6}-hypomorphic. We obtain immediately the

proof from the following two cases.
Case 1. If X ̸∈ {X1, Xk}.

Let p = |X| and A ⊂ X such that |A| = p−6. As |V | ≥ 12, there exists a subset
B of V −X such that |B| = 10−p, Xk−B ̸= ∅ and X1−B ̸= ∅. It is clear that
T − (A∪B) and T

′ − (A∪B) are {−1}-hemimorphic and (≤ 4)-hypomorphic.
So from Lemma 5.7, there exists x ∈ V − (X ∪B) such that T − (A∪B ∪ {x})
and T

′ − (A ∪B ∪ {x}) are isomorphic. Thus, by Lemma 5.8, we deduce that

T [X −A] and T
′
[X −A] are isomorphic.

Case 2. If X ∈ {X1, Xk}.
First, assume that X = X1. Let p = |X|, A ⊂ X such that |A| = p − 6 and
suppose that T [X−A] is hemimorphic to P. By Lemma 5.15 it suffices to show

that T [X − A] and T
′
[X − A] are isomorphic. If |Xk| ≤ 11 − p, we consider

a subset B ⊂ V − X such that |B| = 11 − p and Xk − B ̸= ∅. We directly

verify that X −A is the first component of T − (A∪B) and T
′ − (A∪B) and

their last component Z is either strongly connected included in Xk − B with
|Z| < |X − A| or it is a total order. So, we directly deduce that T − (A ∪ B)

and T
′ − (A ∪ B) are necessarily isomorphic. Thus, by Lemma 5.8, it results

that T [X −A] and T
′
[X −A] are isomorphic. Assume now that |Xk| > 11− p.

If |Xk| ̸= 17 − p, we consider a subset C of Xk verifying |C| = 11 − p and if
T [Xk] is strongly connected and |Xk−C| ≥ 3, T [Xk−C] is strongly connected.
In that case, by seeing either the strong connectivity or the cardinality of the
first and the last components of T − (A∪C) and T

′ − (A∪C) we deduce that

T − (A∪C) and T
′ − (A∪C) are isomorphic and consequently by Lemma 5.8,

T [X−A] and T
′
[X−A] are isomorphic. Otherwise, if there exists B ⊂ Xk such

that |B| = 11− p and T
′
[Xk −B] ̸≃ T ∗[X −A] or T [Xk −B] ̸≃ (T

′
)∗[X −A],

then T − (A ∪ B) and T
′ − (A ∪ B) are necessarily isomorphic. Thus, by

Lemma 5.8, T [X −A] and T
′
[X −A] are isomorphic. At present, assume that

for all subset C of Xk such that |C| = 11− p, T [Xk − C] ≃ (T
′
)∗[X − A] and

T ∗[X−A] ≃ T
′
[Xk−C]. So, T

′
[Xk] and T [Xk] are {−(11−p)}-monomorphic.

As Lemma 6.3 said that T
′
[Xk] ≃ T [Xk], it results that T [X−A] and T

′
[X−A]

are isomorphic. Thus, if X = X1, T [X] and T
′
[X] are hereditarily isomorphic.

Second, assume that X = Xk. By applying the first step on the tournaments
T ∗ and (T

′
)∗, we deduce that T [X] and T

′
[X] are hereditarily isomorphic. □

This notation is needed.

Notation 6.9. Let R be a tournament defined on a vertex set V
′
, X ∈ P̃ (R),

an element x of X and a subset B of V
′ − X with at most 5 elements. We
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denote by V
′

(x,B) the set (V
′ − (X ∪ B)) ∪ {x} and R(x,B) the subtournament

R[V
′

(x,B)].

Lemma 6.10. If k = 2 and P̃ (T ) = {{a}, X}, then T [X] and T
′
[X] are

hereditarily isomorphic.

Proof. First, assume that T
′
[X]/P̃ (T [X]) = T ∗[X]/P̃ (T [X]). As T [X] and

T
′
[X] are (≤ 4)-hypomorphic, then T [X]/P̃ (T [X]) is necessarily a tournament

without diamonds. For the same reason for all Y ∈ P̃ (T [X]), T [Y ] has no a

3-cycle; which implies that for all Y ∈ P̃ (T [X]), T [Y ] is a total order. So,
T [X] is without diamonds. Let A ⊂ X such that |A| = 5. As from Remark 3.9,
each subtournament of T [X] is either a total order or strongly connected, we
have to distinguish these two situations. If T [X −A] is strongly connected, we

obligatorily have T
′ −A ≃ T −A and then T

′
[X −A] ≃ T [X −A]. Otherwise,

T [X−A] is necessarily a total order and therefore T
′
[X−A] ≃ T [X−A]. Thus,

T [X] and T
′
[X] are {−5}-hypomorphic. Hence, from Theorem 2.6, T [X] and

T
′
[X] are hereditarily isomorphic.
At present, due to Remark 3.6 one may assume that

T [X]/P̃ (T [X]) = T
′
[X]/P̃ (T [X]).

In this case, to obtain the result, we have to show that for all Y ∈ P̃ (T [X]),

T [Y ] and T
′
[Y ] are hereditarily isomorphic. For this, because Corollary 2.10

presents an important tool in the proof, we have first to establish the following
fact in which we study the cases where we can not apply it.

Fact 1. For all Y ∈ P̃ (T [X]), such that |Y | > n− |P̃ (T [X])| − 5, T [Y ] and

T
′
[Y ] are hereditarily isomorphic.

Indeed: Let Y ∈ P̃ (T [X]), such that |Y | > n− |P̃ (T [X])| − 5. First, assume
that 6 ≤ |Y | ≤ 10. Let p = |Y |, x ∈ Y and A ⊂ Y such that |A| = p − 6. As

|Y | > n − |P̃ (T [X]) − 5, then it is clear that for all Z ∈ P̃ (T [X]) − {Y }, 1 ≤
|Z| ≤ 5 and for all subset B of V −Y , such that |B| = 11− p, |V(x,B)| ≥ 2. So,
by applying Lemma 5.12 to the tournament T = T(x,∅), there exists C ⊂ V −Y ,
such that |C| = 11 − p and sT −C(x) ̸= s(T )∗−C(x). Suppose that T [Y − A]

is hemimorphic to P and T
′
[Y − A] ̸≃ T [Y − A]. As from Lemma 6.2, T and

T
′
are (≤ 5)-hypomorphic, then by Remark 5.14, T

′
[Y − A] ≃ T ∗[Y − A] and

T [Y − A] ̸≃ T ∗[Y − A]. We may easily see that there exists an isomorphism

g from T(x,C) = T − C onto T
′

(x,C), such that g(x) = x. In addition, as the

tournament T−(A∪C) (resp. T
′−(A∪C)) is obtained from T(x,C) (resp. T

′

(x,C))

by dilating the vertex x by T [Y −A] (resp. T
′
[Y −A]), then Lemma 5.5 said that

T − (A∪C) and T
′ − (A∪C) are not hemimorphic; contradiction. Thus, from

Lemma 5.15, it follows that T [Y ] and T
′
[Y ] are (≤ 6)-hypomorphic and then

we apply Corollary 2.1. At present, assume that |Y | ≥ 11. Consider A ⊂ Y
such that |A| = 5. Since T [X −A] is strongly connected on at least 6 vertices,
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then the tournaments T − A and T
′ − A are necessarily isomorphic and thus

T [X−A] and T
′
[X−A] are isomorphic. Besides, as for all Z ∈ P̃ (T [X])−{Y },

1 ≤ |Z| ≤ 5, then T [Y − A] ≃ T
′
[Y − A]. So, T [Y ] and T

′
[Y ] are hereditarily

isomorphic, by Theorem 2.6.
Now, using Corollary 2.10 and Fact 1, the following three facts permit us to

complete the proof.

Fact 2. For all Y ∈ P̃ (T [X]) (resp. such that 7 ≤ |Y | ≤ 9), T [Y ] and T
′
[Y ]

are isomorphic (resp. hereditarily isomorphic).

Indeed: Consider an element Y of P̃ (T [X]) (resp. an element Y of P̃ (T [X])
such that p = |Y | ∈ {7, 8, 9} and a subset A ⊂ Y such that |A| = p − 6).

Given the tournament K obtained from T [X]/P̃ (T [X]) by dilating Y by T [Y ]

(resp. by T [Y −A]) and the tournament H obtained from T/P̃ (T ) by dilating
X by K. By Fact 1, we can assume that |H| ≤ n− 5. Let y1 ̸= y2 ∈ Y (resp.
y1 ̸= y2 ∈ Y − A). From Corollary 2.10, it follows that n(T,H; {y1, y2}) =

n(T
′
,H; {y1, y2}) (resp. n(T − A,H; {y1, y2}) = n(T

′ − A,H; {y1, y2})). As
n(T,H; {y1, y2}) ̸= 0 (resp. n(T − A,H; {y1, y2}) ̸= 0), then there exists a

subset F of V (resp. of V −A) such that {y1, y2} ⊂ F and T
′
[F ] is hemimorphic

to H. We can verify that Y ⊂ F (resp. Y −A ⊂ F ) for all Z ∈ P̃ (T [X])−{Y },
|Z∩F | = 1 and a ∈ F . Thus, T

′
[F ] and H are necessarily isomorphic and then

T [Y ] ≃ T
′
[Y ] (resp. T [Y − A] ≃ T

′
[Y − A] and then we conclude by Lemma

6.2 and Corollary 2.1).

Fact 3. For all Y ∈ P̃ (T [X]) such that |Y | = 10, T [Y ] and T
′
[Y ] are

hereditarily isomorphic.

Indeed: Let Y ∈ P̃ (T [X]) such that |Y | = 10. Consider a subset A ⊂ Y such

that |A| = 4. From Fact 1, we may assume that there exists Z ∈ P̃ (T [X])−{Y }
such that |Z| ≥ 2. Let x ∈ Z. It is clear that T − (A∪{x}) and T

′ − (A∪{x})
are necessarily isomorphic. Hence T [X − (A∪ {x})] and T

′
[X − (A∪ {x})] are

isomorphic. In addition, by using Fact 2, it follows that for all K ∈ P̃6(T [X −
(A∪{x})])−{Y −A}, T ′

[K] ≃ T [K]. So, T [Y −A] and T
′
[Y −A] are isomorphic

and then we apply Theorem 2.6.

Fact 4. For all Y ∈ P̃ (T [X]), such that |Y | ≥ 11, T [Y ] and T
′
[Y ] are

hereditarily isomorphic.

Indeed: Let Y ∈ P̃ (T [X]) such that |Y | ≥ 11 and a subset A ⊂ Y such
that |A| = 5. As T [X − A] is strongly connected on at least 6 vertices, then

the tournaments T − A and T
′ − A are necessarily isomorphic. So, T [X − A]

and T
′
[X − A] are isomorphic. Besides, from Fact 2, we have for all Z ∈

P̃|Y−A|((T [X]))−{Y }, T [Z] and T
′
[Z] are isomorphic. Thus, we directly deduce

that T [Y −A] and T
′
[Y −A] are isomorphic and then we conclude by Theorem

2.6. □

Proposition 6.11. If T is strongly connected, then for all X ∈ P̃ (T ), T [X]

and T
′
[X] are hereditarily isomorphic.
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Proof of Proposition 6.11

We proceed by induction on the number n of vertices of the tournaments T
and T

′
.

First, assume that n = 12. Let X ∈ P̃ (T ). If |X| ≤ 6, by Corollary 6.4,

T [X] and T
′
[X] are hereditarily isomorphic. Otherwise, if T [X] has no sub-

tournaments hemimorphic to P, as T and T
′
are (≤ 5)-hypomorphic by Lemma

6.2, then according to Lemma 5.15, T [X] and T
′
[X] are (≤ 6)-hypomorphic.

Thus we apply Corollary 2.1. At present, assume that there is Y ⊆ X such
that T [Y ] is hemimorphic to P. Consider y ∈ V − X such that X → y in T

and T
′
. Because Y → y in T and T

′
and the subtournaments T [Y ∪ {y}] and

T
′
[Y ∪ {y}] are hemimorphic (since |Y ∪ {y}| = n − 5), then T [Y ] and T

′
[Y ]

are necessarily isomorphic. Thus we conclude by Lemma 5.15 and Corollary
2.1.

Second, assume that n ≥ 13 and that for all integer p with 12 ≤ p < n, if
R and R

′
are two {−5}-hemimorphic strongly connected tournaments on at

least p vertices such that R/P̃ (R) = R
′
/P̃ (R), then for all Z ∈ P̃ (R), T [Z]

and T
′
[Z] are hereditarily isomorphic.

Using the following five lemmas, one may immediately deduce the proof of
Proposition 6.11.

Lemma 6.12. Given X ∈ P̃ (T ), if for all Y ∈ P̃ (T ) − {X}, |Y | ≤ 6, then

T [X] and T
′
[X] are hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that for all Y ∈ P̃ (T )−{X}, |Y | ≤ 6 and let x ∈ X.
From Corollary 6.4, we may assume that |X| ≥ 7. We obtain immediately the
proof from the following three facts.

Fact 1. If 7 ≤ |X| ≤ 10, then T [X] and T
′
[X] are hereditarily isomorphic.

Indeed: Using Corollary 2.1 and Lemma 6.2, it is sufficient to demonstrate
that T [X] and T

′
[X] are {6}-hypomorphic. Denoting p = |X| and let A ⊂ X

such that |A| = p−6. By Lemma 5.15, we should demonstrate that if T [X−A]

is hemimorphic to P, then T
′
[X −A] is isomorphic to T [X −A]. Suppose that

T [X − A] is hemimorphic to P and T
′
[X − A] is isomorphic to T ∗[X − A].

Since |V(x,∅)| ≥ 13 − p, then from Lemma 5.12, there exists B ⊂ V − X,
such that |B| = 11 − p and sT (x,B)(x) ̸= sT∗(x,B)(x). Furthermore, as for all

Y ∈ P̃ (T )− {X}, T [Y ] and T
′
[Y ] are hereditarily isomorphic and T

′
/P̃ (T ) =

T/P̃ (T ), then we directly verify that there exists an isomorphism g from T(x,B)

onto T
′

(x,B) such that g(x) = x. Since T − (A ∪ B) (resp. T
′ − (A ∪ B))

is obtained from the tournament T(x,B) (resp. T
′

(x,B)) by dilating the vertex

x by T [X − A] (resp. T
′
[X − A]), then from Lemma 5.5, T − (A ∪ B) and

T
′ − (A ∪ B) are not hemimorphic; which contradicts the fact that T

′
and T

are {−5}-hemimorphic.
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Fact 2. If |X| ≥ 11, and there exists Y ∈ P̃ (T ) − {X} such that |Y | ≥ 2,

then T [X] and T
′
[X] are hereditarily isomorphic.

Indeed: From Theorem 2.6, it is sufficient to show that T [X] and T
′
[X] are

{−4}-hypomorphic. Let A ⊂ X such that |A| = 4, Y ∈ P̃ (T ) − {X}, such
that |Y | ≥ 2 and y ∈ Y . It is clear that T − (A ∪ {y}) and T

′ − (A ∪ {y}) are
strongly connected hemimorphic tournaments such that P̃ (T − (A ∪ {y})) =

P̃ (T
′ − (A ∪ {y})) = (P̃ (T ) − {X,Y }) ∪ {X − A, Y − {y}}. As |X − A| ≥ 7

and for all Z ∈ P̃ (T − (A ∪ {y})) − {X − A}, |Z| ≤ 6, we directly verify that

T [X−A] and T
′
[X−A] are hemimorphic. Suppose that T

′
[X−A] ≃ T ∗[X−A]

and T [X − A] is not selfdual. As |V(x,∅)| ≥ 3, then from Lemma 5.12, there
exists b ∈ V −X such that sT (x,{b})(x) ̸= sT∗(x,{b})(x). Hence, there exists an

isomorphism g from T(x,{b}) onto T
′

(x,{b}) such that g(x) = x. Since T−(A∪{b})
(resp. T

′ − (A∪ {b})) is obtained from the tournament T(x,{b}) (resp. T
′

(x,{b}))

by dilating the vertex x by T [X −A] (resp. T
′
[X −A]), then from Lemma 5.5,

T − (A ∪ {b}) and T
′ − (A ∪ {b}) are not hemimorphic; contradiction.

Fact 3. If |X| ≥ 11, and for all Y ∈ P̃ (T ) − {X}, |Y | = 1, then T [X] and

T
′
[X] are hereditarily isomorphic. Indeed:
Case 1. sT (x,∅)(x) ̸= sT∗(x,∅)(x).

Using Theorem 2.6, it is enough to show that T [X] and T
′
[X] are {−5}-

hypomorphic. Consider A ⊂ X such that |A| = 5. It is clear that T − A

and T
′ − A are strongly connected such that P̃ (T − A) = P̃ (T

′ − A) =

(P̃ (T ) − {X}) ∪ {X − A}. As |X − A| ≥ 6 and for all Z ∈ P̃ (T ) − {X},
|Z| = 1, then fA(X − A) = X − A. Furthermore, as sT (x,∅)(x) ̸= sT∗(x,∅)(x),

fA is necessarily an isomorphism and then T [X −A] ≃ T
′
[X −A].

Case 2. If sT (x,∅)(x) = sT∗(x,∅)(x).

Clearly, |P̃ (T )| is odd. From Theorem 2.6 it is sufficient to prove that T [X] and

T
′
[X] are {−4}-hypomorphic. Let A ⊂ X such that |A| = 4. If |T/P̃ (T )| ≥ 5,

as T/P̃ (T ) is indecomposable, then from Corollary 5.4 there exist two distinct

elements Y,Z ∈ P̃ (T )− {X} such that (T/P̃ (T ))− {Y, Z} is indecomposable.

Let V
′
= P (T ) − {Y, Z}. Necessarily, there exists α ∈ {Y, Z}, such that

α ̸∈ V
′
(X). For instance, Y ̸∈ V

′
(X). From Proposition 5.2, we have to

distinguish these three situations.

• Y ∈ ⟨V ′⟩. In that case we obtain either Y → V − (A ∪ Y ∪ Z) or

V − (A ∪ Y ∪ Z) → Y in T − (A ∪ Z) and T
′ − (A ∪ Z). We may

also verify that T − (A ∪ Y ∪ Z) and T
′ − (A ∪ Y ∪ Z) are strongly

connected non singleton tournaments. So, f(A∪Z) is necessarily an

isomorphism from T − (A ∪ Z) onto T
′ − (A ∪ Z) and in particular

f(A∪Z)(V − (A∪Y ∪Z)) = V − (A∪Y ∪Z). Furthermore, as X −A is

the only element of P̃ (T − (A ∪ Y ∪ Z)) = P̃ (T
′ − (A ∪ Y ∪ Z)) which
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is not a singleton, then f(A∪Z)(X − A) = X − A. Thus T [X − A] and

T
′
[X −A] are isomorphic.

• Y ∈ Ext(V
′
). Clearly, X − A is the only element of P̃ (T − (A ∪

Z)) = P̃ (T
′ − (A ∪ Z)) which is not a singleton. So f(A∪Z)(X − A) =

X −A. As moreover sT (x,Z)(x) ̸= sT∗(x,Z)(x), f(A∪Z) is necessarily an

isomorphism from T −(A∪Z) onto T
′ −(A∪Z). So we directly deduce

that T [X −A] and T
′
[X −A] are isomorphic.

• Y ∈ V
′
(l), where l ∈ V

′−{X}. One may directly verify that P̃ (T−(A∪
Z)) = P̃ (T

′ − (A∪Z)) admits only two non-singleton elements, one of
them is on two elements denoted by W and contains Y and the other is
X−A. Because |X−A| ≥ 7, it results that f(A∪Z)(X−A) = X−A and
f(A∪Z)(W ) = W . Consequently, f(A∪Z) is necessarily an isomorphism

from T − (A∪Z) onto T
′ − (A∪Z) and then T [X −A] and T

′
[X −A]

are isomorphic.

Now assume that |T/P̃ (T )| = 3. We denote {Y, Z} = T/P̃ (T )− {X}. If there
exists l ∈ {Y, Z} such that T − (A ∪ l) ≃ T

′ − (A ∪ l), the result is obtained,

otherwise, T
′
[X − A] and T [X − A] are obligatorily non-strongly connected

tournaments and non total orders. Since T and T
′
are (≤ 4) hypomorphic, it

follows from Remark 3.7 that P̃ (T [X − A]) = P̃ (T
′
[X − A]) = {J1, . . . , Jp}

such that p ≥ 2 and T [X − A]/P̃ (T [X − A]) = T
′
[X − A]/P̃ (T [X − A]) with:

J1 < · · · < Jp. Since T
∗−(A∪Y ) ≃ T

′−(A∪Y ) and T ∗−(A∪Z) ≃ T
′−(A∪Z),

then T [J1] and T
′
[Jp] are total orders. Thus, 1+ |J1| = |Jp| and 1+ |Jp| = |J1|;

contradiction. □

Lemma 6.13. For all X ∈ P̃ (T ) such that |X| ≥ 12, T [X] and T
′
[X] are

hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that |X| ≥ 12 and x ∈ X. We immediately deduce
the proof from the following two facts.

Fact 1. T
′
[X] and T [X] are {−5}-hemimorphic.

Indeed: Let A ⊂ X such that |A| = 5 and proving that T [X − A] and

T
′
[X −A] are hemimorphic. Clearly, T −A and T

′ −A are strongly connected

tournaments such that P̃ (T
′ −A) = P̃ (T −A) = (P̃ (T )−{X})∪{X −A}. As

from Lemma 6.3, for all Z ∈ P̃|X−A|(T − A) − {X − A}, T [Z] and T
′
[Z] are

hemimorphic, then the hemimorphy between T − A and T
′ − A requires the

hemimorphy between T [X −A] and T
′
[X −A].

Fact 2. T
′
[X] and T [X] are hereditarily isomorphic.

Indeed: If T [X] is a total order, the result is obvious. Otherwise, if T [X] is

not strongly connected, as by Remark 3.7, T [X]/P̃ (T [X]) = T
′
[X]/P̃ (T [X]),

then Proposition 6.6 permits us to conclude. Now assume that T [X] is strongly
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connected. If T [X]/P̃ (T [X]) = T
′
[X]/P̃ (T [X]), we apply the induction hy-

pothesis. Otherwise, as proven in the beginning of Lemma 6.10, the subtour-
nament T [X] is without diamonds.

First, assume that sT(x,∅)(x) ̸= sT∗
(x,∅)

(x). From Theorem 2.6, it is sufficient,

to prove that T [X] and T
′
[X] are {−5}-hypomorphic. Given A ⊂ X such

that |A| = 5 and proving that T [X − A] ≃ T
′
[X − A]. Because T [X] is a

tournament without diamonds and T ∗[X]/P̃ (T [X]) = T
′
[X]/P̃ (T [X]), from

Remark 3.9 it follows that T
′
[X] and T ∗[X] are hereditarily isomorphic. So,

to obtain the result it suffices to show that T [X − A] is selfdual. Suppose by

contradiction that it is not selfdual. As for all Z ∈ P̃ (T )−{X}, T [Z] and T
′
[Z]

are isomorphic, there exists an isomorphism g from T(x,∅) onto T
′

(x,∅) such that

g(x) = x. Since T − A (resp. T
′ − A) is obtained from the tournament T(x,∅)

(resp. T
′

(x,∅)) by dilating the vertex x by T [X − A] (resp. T
′
[X − A]), then

from Lemma 5.5, T −A and T
′ −A are not hemimorphic; contradiction.

Second, assume that sT(x,∅)(x) = sT∗
(x,∅)

(x). Using Theorem 2.6 and Remark

3.9, it is enough to show that T [X] is {−4}-selfdual. Suppose by contradiction
that there is B ⊂ X such that |B| = 4 and T [X−B] is not selfdual. According

to Lemma 6.12, we may assume that there exists Y ∈ P̃ (T ) − {X} such that

|Y | ≥ 7. Let M ∈ P̃ (T )−{X} such that |M | = min{|Z|;Z ∈ P̃ (T )−{X} and

|Z| ≥ 2}. If there exists m ∈ M such that T
′
[M−{m}] ≃ T [M−{m}], we may

easily verify that sT(x,{m})(x) ̸= sT∗
(x,{m})

(x) and then we obtain a contradiction

by Lemma 5.5. Otherwise, as T and T
′
are (≤ 5)-hypomorphic, then |M | ≥ 7.

Considering m ∈ M and envisaging the following three cases.
Case 1. If |X −B| > |M | − 1.

As T
′ − (B∪{m}) and T − (B∪{m}) are strongly connected with P̃|M |−1(T

′ −
(B ∪ {m})) = P̃|M |−1(T − (B ∪ {m})) = {M − {m}}. Thus, f(B∪{m})(M −
{m}) = M − {m}. Since T [M − {m}] ̸≃ T

′
[M − {m}], then f(B∪{m}) is

necessarily an isomorphism from T
′ −(B∪{m}) onto T ∗−(B∪{m}). It results

that sT(m,B)
(m) = sT∗

(m,B)
(m). Let a ̸= b ∈ M and C ⊂ X such that |C| = 3.

It is clear that T − (C ∪ {a, b}) and T
′ − (C ∪ {a, b}) are strongly connected

with P̃|M |−2(T − (C ∪ {a, b})) = P̃|M |−2(T
′ − (C ∪ {a, b})) = {M − {a, b}}.

So, f(C∪{a,b})(M − {a, b}) = M − {a, b}. As sT(m,C)
(m) ̸= sT∗

(m,C)
(m), then

f(C∪{a,b}) is necessarily an isomorphism from T − (C ∪ {a, b}) onto T
′ − (C ∪

{a, b}) and in particular T [M−{a, b}] ≃ T
′
[M−{a, b}]. As from Lemma 6.3, for

all Z ∈ P̃ (T−(C∪{a, b}))−{X−C,M−{a, b}}, T [Z] and T
′
[Z] are isomorphic,

it results that T [X −C] ≃ T
′
[X −C] and then T [X −C] ≃ T ∗[X −C]. Hence,

T [X] is {−3}-selfdual. Thus, it follows from Lemma 2.7 that T [X] and T ∗[X]
are hereditarily isomorphic; which contradicts the fact that T [X − B] is not
selfdual.
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Case 2. If |X −B| < |M | − 1.

It is clear that T
′ − (B ∪{m}) and T − (B ∪{m}) are strongly connected with

P̃|X−B|(T
′ −(B∪{m})) = P̃|X−B|(T −(B∪{m})) = {X−B} and P̃|M |−1(T

′ −
(B ∪ {m})) = P̃|M |−1(T − (B ∪ {m})) = {M − {m}}. So, f(B∪{m})(X −B) =
X −B and f(B∪{m})(M − {m}) = M − {m}. Thus, f(B∪{m}) is necessarily an

isomorphism from T − (B ∪ {m}) onto T
′ − (B ∪ {m}); which contradicts the

fact that T
′
[M − {m}] ̸≃ T [M − {m}].

Case 3. If |X −B| = |M | − 1.

Consider an element y of M . Clearly, T
′ − (B ∪ {y}) and T − (B ∪ {y}) are

strongly connected with P̃|M |−1(T
′ − (B ∪ {y})) = P̃|M |−1(T − (B ∪ {y})) =

{X−B,M−{y}}. Moreover, as T
′
[M−{y}] ̸≃ T [M−{y}], then f(B∪{y}) is an

isomorphism from T
′−(B∪{y}) onto T ∗−(B∪{y}) such that f(B∪{y})(X−B) =

M − {y} and f(B∪{y})(M − {y}) = X −B. So, T
′
[X −B] ≃ T ∗[M − {y}] and

T
′
[M − {y}] ≃ T ∗[X − B]. Thus, T

′
[M ] and T [M ] are {−1}-monomorphic.

Since T
′
[X−B] ≃ T ∗[X−B], then for all z ∈ M , T

′
[M−{z}] ≃ T ∗[M−{z}] and

thus T
′
[M ] and T ∗[M ] are {−1}-hypomorphic. Furthermore, as T [X −B] is a

tournament without diamonds, T [M ] is also without diamonds. Using Remark

3.9 and Lemma 6.2, it results that T
′
[M ] and T ∗[M ] are {4}-hypomorphic.

Hence, T
′
[M ] and T ∗[M ] are {4,−1}-hypomorphic and then they are isomor-

phic by Theorem 4.5. Besides, as T
′
[M ] ≃ T [M ], by Lemma 6.3, then T [M ] is

selfdual. From the {−1}-monomorphy of T [M ], it follows that for all z ∈ M ,

T [M−{z}] is selfdual and then T
′
[M−{z}] ≃ T [M−{z}]; which is absurd. □

Lemma 6.14. For all X ∈ P̃ (T ) such that |X| = 7, T [X] and T
′
[X] are

hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that |X| = 7 and x ∈ X. By Lemma 6.12, we may

assume, in the sequel of this proof, that there exists Y ∈ P̃ (T )−{X} such that
|Y | ≥ 7. The following two facts allow us to directly obtain the proof.

Fact 1. If |X| ≤ n − |P (T )| − 9, then T [X] and T
′
[X] are hereditarily

isomorphic.
Indeed: Let B ⊆ Y such that |B| = 7, a ̸= b ∈ X − {x}, c ̸= d ∈ B and

consider the tournament H obtained from T/P̃ (T ) by dilating X by T [X −
{x}] and Y by T [B]. Since T − x and T

′ − x are {−4}-hemimorphic and
|H| ≤ n − 5, it follows from Corollary 2.10 that n(T − x,H; {a, b, c, d}) =

n(T
′ − x,H; {a, b, c, d}). As n(T − x,H; {a, b, c, d}) ̸= 0, then there exists a

subset K of V − {x} such that a, b, c, d ∈ K and T
′
[K] is hemimorphic to H.

As K ∩ (X − {x}) and K ∩ Y are non trivial intervals of T
′
[K], we directly

verify that: X − {x} ⊂ K, |K ∩ Y | = 7 and for all Z ∈ P̃ (T ) − {X,Y },
|K ∩ Z| = 1. Thus, T

′
[K] and H are necessarily isomorphic. So, T [X − {x}]

and T
′
[X − {x}] are isomorphic and then T [X] and T

′
[X] are hereditarily

isomorphic, by Lemma 6.2 and Corollary 2.1.
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Fact 2. If |X| ≥ n − |P (T )| − 8, then T [X] and T
′
[X] are hereditarily

isomorphic.

Indeed: Clearly, for all Z ∈ P̃ (T )− {X,Y }, 1 ≤ |Z| ≤ 5.

• If |Y | ≠ 10. One can verify that there is a subset A of V − X such

that |A| = 4 and satisfying the following: for all Z ∈ P̃ (T ) − {X},
Z − A ̸= ∅, P̃6(T − (A ∪ {x})) = {X − {x}} and there is an integer

k ≥ 2 fulfilling k ̸= 6 and |P̃k(T−(A∪{x}))| = 1. Clearly, T−(A∪{x})
and T

′ − (A ∪ {x}) are necessarily isomorphic. Hence T [X − {x}] and
T

′
[X − {x}] are isomorphic and thus they are hereditarily isomorphic,

by Lemma 6.2 and Corollary 2.1.
• If |Y | = 10. Consider a subset B of Y such that |B| = 3 and a

subset A of V such that |A| = 2 and verifying: A ⊂ X if P̃5(T ) =

∅, otherwise there is Z ∈ P̃5(T ) such that |A ∩ Z| = |A ∩ X| = 1.

Clearly, T − (A ∪ B) and T
′ − (A ∪ B) are strongly connected with

P̃7(T − (A∪B)) = P̃7(T
′ − (A∪B)) = {Y −B} and there is k ∈ {5, 6}

such that P̃k(T
′ − (A∪B)) = P̃k(T − (A∪B)) = {X −A}. Therefore,

we deduce that T − (A ∪ B) and T
′ − (A ∪ B) are isomorphic and

in particular T [Y − B] ≃ T
′
[Y − B]. So, T [Y ] and T

′
[Y ] are {−3}-

hypomorphic. At present, suppose that T [X − {x}] is hemimorphic to

P and T
′
[X − {x}] ≃ T ∗[X − {x}]. Let C be a subset of Y such that

|C| = 3. As |V − (X ∪ C)| ≥ 2, it follows from Lemma 5.12 that there
exists z ∈ V − (X ∪C) such that sT (x,C∪{z})(x) ̸= sT∗(x,C∪{z})(x). By
Lemma 5.5, we can deduce that the tournaments T − (C ∪ {a, z}) and
T

′−(C∪{a, z}) are not hemimorphic; contradiction. So, T
′
[X−{x}] ≃

T [X − {x}] and then from Lemma 5.15 and Corollary 2.1, T [X] and

T
′
[X] are hereditarily isomorphic. □

Lemma 6.15. For all X ∈ P̃ (T ) such that 8 ≤ |X| ≤ 10, T [X] and T
′
[X] are

hereditarily isomorphic.

Proof. Let X ∈ P̃ (T ) such that 8 ≤ |X| ≤ 10 and x ∈ X. For each value

p = |X|, we can assume that for all Y ∈ P̃ (T ) such that 1 ≤ |Y | ≤ p − 1,

T [Y ] and T
′
[Y ] are hereditarily isomorphic. So, to demonstrate the lemma for

p = |X|, we should show the result firstly for p = 8, secondly for p = 9 and
finally for p = 10. Consider the following sets:

E1 =

p−1∪
k=1

P̃k(T ), E2 = (
∪
k≥p

P̃k(T ))− {X}, F1 =
∪

Y ∈E1

Y and F2 =
∪

Y ∈E2

Y.

Let A ⊂ X such that |A| = p−6. The following three facts permit us to deduce
immediately the proof.

Fact 1. If either (E2 = ∅) or (E1 ̸= ∅ and there exists B ⊆ F1 such that

|B| = 11 − p and sT (x,B) ̸= sT∗(x,B)), then T [X] and T
′
[X] are hereditarily

isomorphic.



HEREDITARY HEMIMORPHY OF {−k}-HEMIMORPHIC TOURNAMENTS 623

Indeed: By Lemma 6.12, we may assume that there exists Y ∈ P̃ (T )−{X}
such that |Y | ≥ 7. If E2 = ∅, it follows from Lemma 5.12 that there exits
C ⊂ V −X = F1 such that |C| = 11− p and sT (x,C)(x) ̸= sT∗(x,C)(x). Hence,
in the two situations of the hypothesis of the fact there exists B ⊂ F1 such
that |B| = 11 − p and sT (x,B)(x) ̸= sT∗(x,B)(x). Suppose that T [X − A] is

hemimorphic to P and T
′
[X − A] is isomorphic to T ∗[X − A]. As for all Z ∈

P̃ (T )−{X} (resp. Z ∈ E1), T
′
[Z] and T [Z] are isomorphic (resp. hereditarily

isomorphic), then there exists an isomorphism g from T(x,B) onto T
′

(x,B) such

that g(x) = x. In addition, the tournament T − (A ∪B) (resp. T
′ − (A ∪B))

is obtained from T(x,B) (resp. T
′

(x,B)) by dilating the vertex x by T [X − A]

(resp. T
′
[X − A]). Then from Lemma 5.5, T − (A ∪ B) and T

′ − (A ∪ B)

are not hemimorphic; contradiction. Thus, T [X] and T
′
[X] are hereditarily

isomorphic, by Lemma 5.15 and Corollary 2.1.
Fact 2. If E2 ̸= ∅ and either (|F1| ≤ 2) or (|F1| ≥ 3 and for all Y ∈ E1,

1 ≤ |Y | ≤ 11− p), then T [X] and T
′
[X] are hereditarily isomorphic.

Indeed: Consider an element Z of E2 such that |Z| = k = min{|Y |;Y ∈ E2}.
• If either p ∈ {9, 10} or (p = 8 and k ̸= 9). Consider a subset C of Z

such that |C| = 11−p. Clearly, T−(A∪C) and T
′−(A∪C) are strongly

connected tournaments with P̃6(T−(A∪C)) = P̃6(T
′−(A∪C) = {X−

A} and P̃k−(11−p)(T−(A∪C)) = P̃k−(11−p)(T
′−(A∪C) = {Z−C}. So,

f(A∪C)(X−A) = X−A and f(A∪C)(Z−C) = Z−C. Hence, f(A∪C) is

necessarily an isomorphism and in particular T [X−A] and T
′
[X−A] are

isomorphic. Consequently, T [X] and T
′
[X] are hereditarily isomorphic,

by Lemma 6.2 and Corollary 2.1.
• If (p = 8 and k = 9). If there is a subset C of Z such that |C| = 3 and

T
′
[Z−C] ̸≃ T ∗[X−A], then it results that T

′ − (A∪C) ≃ T − (A∪C)

and then T [X − A] and T
′
[X − A] are isomorphic. Otherwise, the

tournament T
′
[Z] is {−3}-monomorphic and then by the combinatorial

lemma of Pouzet, it is {3}-monomorphic. Besides, as |Z| = 9 and every
tournament on four vertices contains at least a total order on three
vertices, then T

′
[Z] is a total order. Thus, T [X − A] is a total order

and then T [X−A] and T
′
[X−A] are isomorphic. According to Lemma

6.2 and Corollary 2.1, T
′
[X] and T [X] are hereditarily isomorphic.

Fact 3. If E2 ̸= ∅, |F1| ≥ 3 and there is Y ∈ E1 such that |Y | > 11 − p,

then T [X] and T
′
[X] are hereditarily isomorphic.

Indeed: By Fact 1, we may assume that for allB ⊆ F1, such that |B| = 11−p,
sT (x,B)(x) = sT∗(x,B)(x). So, we may directly verify that F1 is an interval of
T [X ∪F1]. Let B be a subset of Y such that |B| = 11−p. Clearly, T − (A∪B)

and T
′−(A∪B) are strongly connected and P̃ (T−(A∪B)) = P̃ (T

′−(A∪B)) =
E2∪{X−A, Y −B}∪ (E1−{Y }). So, f(A∪B)({X−A, Y −B}∪ (E1−{Y })) =
{X − A, Y − B} ∪ (E1 − {Y }) and in particular T

′
[(F1 ∪ X) − (A ∪ B)] and
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T [(F1∪X)−(A∪B)] are hemimorphic. Suppose that T [X−A] is hemimorphic to

P and T
′
[X−A] is isomorphic to T ∗[X−A]. As, for all Z ∈ E1, T [Z] and T

′
[Z]

are hereditarily isomorphic and F1 and X are two intervals of T [F1 ∪X] and

T
′
[F1∪X], then by Lemma 5.5, we may easily verify that T

′
[(F1∪X)−(A∪B)]

and T [(F1 ∪X)− (A ∪B)] are not hemimorphic; contradiction. So, T [X] and

T
′
[X] are hereditarily isomorphic. □

Lemma 6.16. For all X ∈ P̃ (T ) such that |X| = 11, T [X] and T
′
[X] are

hereditarily isomorphic.

Proof. Notice that from the preceding lemmas it follows that for all Z ∈ P̃ (T )

such that |Z| ̸= 11, T [Z] and T
′
[Z] are hereditarily isomorphic. Let X ∈ P̃ (T )

such that |X| = 11 and x ∈ X. If sT (x,∅) ̸= sT∗(x,∅), we consider a subset

A ⊂ X such that |A| = 5. As for all Y ∈ P̃ (T ) − {X}, T [Y ] and T
′
[Y ] are

isomorphic, it follows from Lemmas 5.5 and 5.15, that T
′
[X−A] and T [X−A]

are isomorphic and thus they are hereditarily isomorphic, by Corollary 2.1.
Otherwise, we consider a subset A ⊂ X such that |A| = 4. From Lemma 6.12,

we may assume that there exists Y ∈ P̃ (T ) − {X} such that |Y | ≥ 7. First,

assume that there exists Z ∈ P̃ (T ) − {X}, such that |Z| ≥ 2 and |Z| ̸= 11.

Let y ∈ Z. As T − (A ∪ {y}) and T
′ − (A ∪ {y}) are strongly connected,

X − A ∈ P̃7(T − (A ∪ {y})) = P̃7(T
′ − (A ∪ {y})) and for all Y ∈ P̃7(T −

(A∪{y}))−{X −A}, T [Y ] and T
′
[Y ] are hemimorphic, then the hemimorphy

between T − (A ∪ {y}) and T
′ − (A ∪ {y}) requires the hemimorphy between

T
′
[X −A] and T [X −A]. Assume that T

′
[X −A] is isomorphic to T ∗[X −A]

and T ∗[X − A] ̸≃ T [X − A]. It is clear that sT (x,{y})(x) ̸= sT∗(x,{y})(x). So,

as T [Z − {y}] ≃ T
′
[Z − {y}] and for all M ∈ P̃ (T ) − {X,Z}, T ′

[M ] ≃ T [M ],
then we conclude by Lemma 5.5 and Theorem 2.6. At present, assume that

for all Y ∈ P̃ (T )− ({X} ∪ P̃1(T )), |Y | = 11. Consider Z ∈ P̃11(T )− {X} and

z ∈ Z. As P̃7(T − (A∪ {z})) = {X −A} and sT (x,{z})(x) ̸= sT∗(x,{z})(x), then

T
′ − (A∪ {z}) and T − (A∪ {z}) are necessarily isomorphic. Thus, T

′
[X −A]

and T [X −A] are isomorphic and then Theorem 2.6 said that T [X] and T
′
[X]

are hereditarily isomorphic. □
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Université de Monastir

Avenue de l’environnement 5019, Monastir, Tunisie
E-mail address: nadia elamri@hotmail.fr


