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CRITICAL EXPONENTS FOR A DOUBLY DEGENERATE

PARABOLIC SYSTEM COUPLED

VIA NONLINEAR BOUNDARY FLUX

Yongsheng Mi, Chunlai Mu, and Botao Chen

Abstract. The paper deals with the degenerate parabolic system with
nonlinear boundary flux. By constructing the self-similar supersolution
and subsolution, we obtain the critical global existence curve. The critical

Fujita curve is conjectured with the aid of some new results.

1. Introduction

In this paper, we consider the following doubly degenerate parabolic equa-
tions

(1.1) ut = (|ux|p1(um1)x)x, vt = (|vx|p2(vm2)x)x, x > 0, 0 < t < T

coupled via nonlinear boundary flux{
−|ux|p1(um1)x(0, t) = vq1(0, t), 0 < t < T,
−|vx|p2(vm2)x(0, t) = uq2(0, t), 0 < t < T,

(1.2)

and initial data

(1.3) u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0,

where parameters mi ≥ 1, pi > 0, qi > 0 (i = 1, 2), and u0, v0 are nonnegative
continuous functions with compact support in R+.

Nonlinear parabolic equations (1.1) appear in population dynamics, chemi-
cal reactions, heat transfer, and so on, where u(x, t) and v(x, t) represent the
densities of two biological populations during a migration, the thickness of two
kinds of chemical reactants in a chemical reaction, or the temperatures of two
kinds of porous materials during a propagation.

It is well known that the local existence of the weak solution to the problem
(1.1)-(1.3), defined in the usual integral way, as well as, a comparison principle
can be easily established (see the survey [13] and books [4, 19, 31]).
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The problems on blow-up and global existence conditions, blow-up rates to
nonlinear parabolic equations have been intensively studied (see [1, 2, 3, 5,
8, 11, 10, 13, 16, 17, 18, 21, 23, 26, 30, 31, 28, 29, 32, 34, 35] and references
therein). In particular, the critical Fujita exponents are very interesting for
various nonlinear parabolic equations of mathematical physics (see [3, 15, 18,
26, 30, 31, 28, 29, 32, 34, 35] and references therein). The concept of critical
Fujita exponents was proposed by Fujita in the 1960s during discussion of the
heat conduction equation with a nonlinear source (see [6]).

Now we recall some known results. In [8], Galaktionov and Levine studied
the single equation case

(1.4)

 ut = (um)xx, x > 0, 0 < t < T,
−(um)x(0, t) = up(0, t), 0 < t < T,
u(x, 0) = u0(x), x > 0,

and the heat conduction equation with gradient diffusion

(1.5)

 ut = (|ux|m−1ux)x, x > 0, 0 < t < T,
−|ux|m−1ux(0, t) = up(0, t), 0 < t < T,
u(x, 0) = u0(x), x > 0,

with m ≥ 1, p > 0 and u0 has compact support. They proved that for the
problem (1.4) the critical global exponent is p0 = 1

2 (m + 1) and the critical
Fujita exponent is pc = m + 1, while for the problem (1.5) the critical global
exponent is p0 = 2m

m+1 and the critical Fujita exponent is pc = 2m. The critical

global existence exponent and the critical Fujita exponent of (1.5) were also
considered in [8] for the special case m = 1.

Wang and Yin [30], Li and Mu [16] studied the following single equation

(1.6)

 ut = (|(um)x|p−2(um)x)x, x > 0, 0 < t < T,
−|(um)x|p−2(um)x(0, t) = uq(0, t), 0 < t < T,
u(x, 0) = u0(x), x > 0,

where m > 1, p > 2, q > 0 and m > 0, 1 < p < 1 + 1
m , q > 0, respectively, they

showed that the critical global existence exponent and critical Fujita exponent

are p0 = (m+1)(p−1)
p and pc = (m+ 1)(p− 1).

In [28], Wang et al. considered the following problem

(1.7) ut = uxx, vt = vxx, x > 0, 0 < t < T,

(1.8) −ux(0, t) = vp(0, t), −vx(0, t) = uq(0, t), 0 < t < T,

(1.9) u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0.

Under some assumptions they established the blow-up estimate near the blow-
up time.

In [29], Wang et al. considered the following problem

(1.10) ut = uxx, vt = vxx, x > 0, 0 < t < T,
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(1.11) −ux(0, t) = uαvp(0, t), −vx(0, t) = vβuq(0, t), 0 < t < T,

(1.12) u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0.

The global existence and blow-up conditions for solutions of (1.10)-(1.12) are
pq ≤ (1− β)(1− β) and pq > (1− β)(1− β), respectively. The blow-up rate of
the solution (u, v) is (O((T − t)−γ1), O((T − t)−γ2)) as t → T with α < 1, β < 1
and pq ≥ (1− β)(1− β), where

γ1 =
1

2

p+ 1− β

pq − (1− α)(1− β)
, γ2 =

1

2

q + 1− α

pq − (1− α)(1− β)
.

In [23], Quiros and Rossi considered the degenerate equation

(1.13) ut = (um)xx, vt = (vn)xx, x > 0 , 0 < t < T,

(1.14) −(um)x(0, t) = vp(0, t), −(vn)x(0, t) = uq(0, t), 0 < t < T,

(1.15) u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0

with notation

α1 =
2p+ n+ 1

(m+ 1)(n+ 1)− 4pq
, α2 =

2q +m+ 1

(m+ 1)(n+ 1)− 4pq
,

β1 =
p(m− 1− 2q) + (n+ 1)m

(m+ 1)(n+ 1)− 4pq
, β2 =

q(n− 1− 2p) + (m+ 1)n

(m+ 1)(n+ 1)− 4pq
.

They proved that the solutions of (1.13)-(1.15) are global if pq ≤ 1
4 (m+1)(n+1),

and may blow up in finite time if pq > 1
4 (m + 1)(n + 1). In the case of

pq > 1
4 (m+ 1)(n+1), if α1 + β1 ≤ 0, or α2 + β2 ≤ 0, then every non-negative,

non-trivial solutions of (1.13)-(1.15) blow up in finite time: if α1 + β1 > 0 and
α2 + β2 > 0, then there exist blow-up solutions for large initial and global
solutions for small initial data. The critical Fujita exponents to (1.13)-(1.15)
are described by αi + βi = 0, i = 1, 2, while the blow-up rate of the positive
solution is O((T − t)−α1) for component u and O((T − t)−α2) for v as t → T .

In [7], Galaktionov and Levine studied the following single equation

ut = ∇(|∇u|σ∇um) + up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,

where σ > 0, m > 1, p > 1 and u0(x) is a bounded positive continuous
function. They shown that the critical exponent is pc = m+ σ + σ+2

N .
Recently, Jiang and Zheng [10] studied the following single equation:

(1.16)

 ut = (|ux|β(um)x)x, x > 0, 0 < t < T,
−|ux|β(um)x(0, t) = up(0, t), 0 < t < T,
u(x, 0) = u0(x), x > 0,

wherem ≥ 1,p > 0, β > 0. They obtained the critical global existence exponent
p0 = 2β+m+1

β+2 and the critical Fujita exponent pc = 2β +m+ 1. These results

are the extensions of those of Galaktionov and Levine [8].
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Motivated by the above mentioned works, the aim of this paper is twofold.
On the one hand, we construct the self-similar supersolutions and subsolutions
to obtain the critical global existence curve of the system (1.1)-(1.3). On the
other hand, the critical curve of Fujita type is conjectured with the aid of some
new results. The fact that we are dealing with a system instead of a single
equation forces us to develop some new techniques.

To state our results, we need to introduce the following numbers. Let

k1 =
(p2 + 1)(p1 + 2)q1 + (p1 + 1)(2q2 +m2 + 1)

(p+ 2)(p+ 2)q1q2 − (2q1 +m1 + 1)(2q2 +m2 + 1)
,

k2 =
(p1 + 1)(p2 + 2)q2 + (p2 + 1)(2q1 +m1 + 1)

(p+ 2)(p+ 2)q1q2 − (2q1 +m1 + 1)(2q2 +m2 + 1)
,

l1 =
k2q1 − p1k1 −m1k1

p1 + 1
, l2 =

k1q2 − p2k2 −m2k2
p2 + 1

,

if q1q2 ̸= (2p1+m1+1)(2p2+m2+1)
(p1+1)(p2+2) . The values k1, k2, l1, l2 are the exponents of

self-similar solutions to problem (1.1)-(1.3).
Our main results in this paper are stated as follows.

Theorem 1.1. (1) If q1q2 ≤ (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) , then every nonnegative

solution of the system (1.1)-(1.3) is global in time;

(2) If q1q2 > (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) , then the system (1.1)-(1.3) has a solu-

tion that blows up in a finite time.

Theorem 1.2. Assume q1q2 > (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) .

(1) If max{l1 − k1, l2 − k2} < 0, then every nonnegative nontrivial solution
of the system (1.1)-(1.3) blows up in finite time.

(2) If min{l1 − k1, l2 − k2} > 0, then there exists a global solution to the
system (1.1)-(1.3).

Remark 1.1. Theorem 1.1 show that the critical global existence curve of (1.1)-

(1.3) is q1q2 = (2p1+m1+1)(2p2+m2+1)
(p1+1)(p2+2) , the restriction max{l1 − k1, l2 − k2} < 0

in the Theorem1.2(2) is rather technical. It comes from the construction of
the so-called Zel’dovich-Kompaneetz-Barenblatt profile. We believe that the
critical Fujita curve is min{l1 − k1, l2 − k2} = 0.

Remark 1.2. Unfortunately, we cannot obtain the blow-up rates of the non-
global solution.

The rest of this paper is organized as follows. In Section 2, we consider the
critical global existence curve and prove Theorem 1.1. The proof of Theorem
1.2 is shown in Section 3.

2. Critical global existence curve

In this section, by constructing self-similar sub- and super-solutions to prob-
lem (1.1)-(1.3), we shall prove Theorem 1.1.



CRITICAL EXPONENTS 517

Proof of Theorem 1.1 (1). It is enough to construct global supersolutions with
initial data as large as needed. To this purpose, we look for a globally defined
in time strict supersolution of self-similar form

u(x, t) = eκ1t(M + e−L1xe
−κ2t

)
1

m1 , x ≥ 0, t ≥ 0,

v(x, t) = eκ3t(M + e−L2xe
−κ4t

)
1

m2 , x ≥ 0, t ≥ 0,

where M = max{∥ u0 ∥m1
∞ +1, ∥ v0 ∥m2

∞ +1}, the constants κi > 0 (i =
1, 2, 3, 4), and Li > 0 (i = 1, 2) are to be determined. Obviously, we have

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), x ≥ 0.

After a direct computation, we obtain

ut ≥ κ1e
κ1t(M + e−L1xe

−κ2t

)
1

m1 ≥ κ1e
κ1tM

1
m1 ,

(|ux|p1(um1)x

=− Lp1+1
1

mp1

1

ep1(κ1−κ2)t+(m1κ1−κ2)te−(L1x+p1L1x)e
−κ2t

(M + e−L1xe
−κ2t

)p1(
1

m1
−1),

(|ux|p1(um1)x)x

≤ (p1 + 1)
Lp1+2
1

mp1

1

ep1(κ1−κ2)t+(m1κ1−2κ2)tMp1(
1

m1
−1),

and

vt ≥ κ3e
κ3t(M + e−L2xe

−κ4t

)
1

m2 ≥ κ3e
κ3tM

1
m2 ,

(|vx|p2(vm2)x

=− Lp2+1
2

mp2

2

ep2(κ3−κ4)t+(m2κ3−κ4)te−(L2x+p2L2x)e
−κ4t

(M + e−L2xe
−κ4t

)p2(
1

m2
−1),

(|vx|p2(vm2)x)x

≤ (p2 + 1)
Lp2+2
2

mp2

2

ep2(κ3−κ4)t+(m2κ3−2κ4)tMp2(
1

m2
−1)

in R+ × R+. On the other hand, on the boundary we have

−|ux|p1(um1)x(0, t) =
Lp1+1
1

mp1

1

ep1(κ1−κ2)t+(m1κ1−κ2)t(M + 1)p1(
1

m1
−1),

vq1(0, t) = eq1κ3t(M + 1)
q1
m2 ,

−|vx|p2(vm2)x(0, t) =
Lp2+1
2

mp2

2

ep2(κ3−κ4)t+(m2κ3−κ4)t(M + 1)p2(
1

m2
−1),

uq2(0, t) = eq2κ1t(M + 1)
q2
m1 .
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Therefore, we can see that (u, v) is a supersolution of problem (1.1)-(1.3) pro-
vided that

κ1e
κ1tM

1
m1 ≥ (p1 + 1)

Lp1+2
1

mp1

1

ep1(κ1−κ2)t+(m1κ1−2κ2)tMp1(
1

m1
−1),

κ3e
κ3tM

1
m2 ≥ (p2 + 1)

Lp2+2
2

mp2

2

ep2(κ3−κ4)t+(m2κ3−2κ4)tMp2(
1

m2
−1),

and

Lp1+1
1

mp1

1

ep1(κ1−κ2)t+(m1κ1−κ2)t(M + 1)p1(
1

m1
−1) ≥ eq1κ3t(M + 1)

q1
m2 ,

Lp2+1
2

mp2

2

ep2(κ3−κ4)t+(m2κ3−κ4)t(M + 1)p2(
1

m2
−1) ≥ eq2κ1t(M + 1)

q2
m1 .

In order to verify the above inequalities, we only need impose

κ1 ≥ (p1 +m1)κ1 − (p1 + 2)κ2, κ3 ≥ (p2 +m2)κ3 − (p2 + 2)κ4,(2.1)

p1(κ1 − κ2) +m1κ1 − κ2 ≥ q1κ3, p2(κ3 − κ4) +m2κ3 − κ4 ≥ q2κ1,(2.2)

and

κ1M
1

m1 ≥ (p1 + 1)
Lp1+2
1

mp1

1

Mp1(
1

m1
−1),

κ3M
1

m2 ≥ (p2 + 1)
Lp2+2
2

mp2

2

Mp2(
1

m2
−1),(2.3)

Lp1+1
1

mp1

1

(M + 1)p1(
1

m1
−1) ≥ (M + 1)

q1
m2 ,

Lp2+1
2

mp2

2

(M + 1)p2(
1

m2
−1) ≥ (M + 1)

q2
m1 .(2.4)

Now we show that such choice in (2.1)-(2.4) is valid. Firstly, by taking

L1 = m
p1

p1+1

1 (M + 1)
q1

(p1+1)m2
− p1−m1p1

m1(p1+1) , L2 = m
p2

p2+1

2 (M + 1)
q2

(p2+1)m1
− p2−m2p2

m2(p2+1) ,

we see that (2.4) holds.
Secondly, to obtain (2.1), we take

κ1 = (p1 +m1)κ1 − (p1 + 2)κ2, κ3 = (p3 +m3)κ3 − (p3 + 2)κ4,

which can also written as

κ2 =
p1 +m1 − 1

p1 + 2
κ1, κ4 =

p2 +m2 − 1

p2 + 2
κ3.(2.5)

To obtain the inequalities (2.2), we substitute (2.5) into (2.2) and then only
need to confirm

2p1 +m1 + 1

p1 + 2
κ1 ≥ q1(p2 + 2)

p2 +m2 − 1
κ4,

2p2 +m2 + 1

p2 +m2 − 1
κ4 ≥ q2κ1.(2.6)
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It follows from the assumption

q1q2 ≤ (2p1 +m1 + 1)(2p2 +m2 + 1)

(p1 + 2)(p2 + 2)
,

that (2.6) is true for suitable κ1 and κ4. Finally, we can further choose κ1 and
κ3 large enough such that inequalities (2.3) hold.

Therefore, we have proved that (u, v) is a global supersolution of system
(1.1)-(1.3). The global existence of solutions to problem (1.1)-(1.3) follows
from the comparison principle.

(2) To prove the non-existence of global solutions, we construct a blow-up
self-similar subsolution of the system. Construct

u(x, t) = (T − t)−k1f1(ξ), ξ = x(T − t)−l1 ,(2.7)

v(x, t) = (T − t)−k2f2(η), η = x(T − t)−l2 ,(2.8)

where T is a positive constant and f1, f2 are two compactly supported functions
to be determined.

After some computations, we have

ut = (T − t)−(k1+1)(k1f1(ξ) + l1ξf1
′(ξ)),

|ux|
p1(um1)x = (T − t)−p1k1−p1l1−m1k1−l1 |f1′|p1(fm1

1 )′(ξ),

(|ux|
p1(um1)x)x = (T − t)−p1k1−p1l1−m1k1−2l1(|f1′|p1(fm1

1 )′(ξ))′,

vt = (T − t)−(k2+1)(k2f2(η) + l2ηf2
′(η)),

|vx|
p2(vm2)x = (T − t)−p2k2−p2l2−m2k2−l2 |f2′|p2(fm2

2 )′(η),

(|vx|
p2(vm2)x)x = (T − t)−p2k2−p2l2−m2k2−2l2(|f2′|p2(fm2

2 )′(η))′

and

|ux|
p1(um1)x(0, t) = (T − t)−p1k1−p1l1−m1k1−l1 |f1′|p1(fm1

1 )′(0),

vq1(0, t) = (T − t)−k2q1f2
q1(0),

|vx|
p2(vm2)x(0, t) = (T − t)−p2k2−p2l2−m2k2−l2 |f2′|p2(fm2

2 )′(0),

uq2(0, t) = (T − t)−k1q2f1
q2(0).

Notice that

k1 + 1 = p1k1 + p1l1 +m1k1 + 2l1, p1k1 + p1l1 +m1k1 + l1 = k2q1,

k2 + 1 = p2k2 + p2l2 +m2k2 + 2l2, p2k2 + p2l2 +m2k2 + l2 = k1q2.

Thus, (u, v) is subsolution of (1.1)-(1.3) provided that{
(|f1′|p1(fm1

1 )′(ξ))′ ≥ k1f1(ξ) + l1f
′
1(ξ)ξ,

(|f2′|p2(fm2
2 )′(η))′ ≥ k2f2(η) + l2f

′
2(η)η,

(2.9)

{
−|f1′|p1(fm1

1 )′(0) ≤ f2
q1(0),

−|f2′|p2(fm2
2 )′(0) ≤ f1

q2(0).
(2.10)
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Set

f1(ξ) = A1(a1 − ξ)
p1+1

p1+m1−1

+ , f2(η) = A2(a2 − η)
p2+1

p2+m2−1

+ ,(2.11)

where Ai, ai(i = 1, 2) are constants to be determined. It is easy to see that

f ′
1(ξ) = −A1

p1 + 1

p1 +m1 − 1
(a1 − ξ)

p1+1
p1+m1−1−1

+ ,(2.12)

|f ′
1|p1(fm1

1 )′ = −m1A
m1+p1

1 (
p1 + 1

p1 +m1 − 1
)p1+1(a1 − ξ)

p1+1
p1+m1−1

+ ,(2.13)

(|f ′
1|p1(fm1

1 )′)′ = m1A
m1+p1

1 (
p1 + 1

p1 +m1 − 1
)p1+2(a1 − ξ)

p1+1
p1+m1−1−1

+ ,(2.14)

and

f ′
2(η) = −A2

p2 + 1

p2 +m2 − 1
(a2 − η)

p2+1
p2+m2−1−1

+ ,(2.15)

|f ′
2|p2(fm2

2 )′ = −m2A
m2+p2

2 (
p2 + 1

p2 +m2 − 1
)p2+1(a2 − η)

p2+1
p2+m2−1

+ ,(2.16)

(|f ′
2|p2(fm2

2 )′)′ = m2A
m2+p2

2 (
p2 + 1

p2 +m2 − 1
)p2+2(a2 − η)

p2+1
p2+m2−1−1

+ .(2.17)

Substituting (2.11)-(2.17) into (2.9), then inequalities (2.9) are valid provided
that

k1A1(a1 − ξ)
p1+1

p1+m1−1

+ − l1ξA1
p1 + 1

p1 +m1 − 1
(a1 − ξ)

p1+1
p1+m1−1−1

+

−m1A
m1+p1

1 (
p1 + 1

p1 +m1 − 1
)p1+2(a1 − ξ)

p1+1
p1+m1−1−1

+ ≤ 0

and

k2A2(a2 − η)
p2+1

p2+m2−1

+ − l2ηA2
p2 + 1

p2 +m2 − 1
(a2 − η)

p2+1
p2+m2−1−1

+

−m2A
m2+p2

2 (
p2 + 1

p2 +m2 − 1
)p2+2(a2 − η)

p2+1
p2+m2−1−1

+ ≤ 0.

To show that the above two inequalities hold, we choose a1 and a2 with

a1 = ω1A
m1+p1−1
1 , a2 = ω2A

m2+p2−1
2 ,(2.18)

where

ω1 =
m1(p1 +m1 − 1)

k1(p1 +m1 − 1) + |l1|(p1 + 1)
(

p1 + 1

p1 +m1 − 1
)p1+2,

ω2 =
m2(p2 +m2 − 1)

k2(p2 +m2 − 1) + |l2|(p2 + 1)
(

p2 + 1

p2 +m2 − 1
)p2+2.

Here, we remark that the assumptions q1q2 > (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) imply

k1 > 0, k2 > 0, then the inequalities (2.9) hold.
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On the other hand, the boundary conditions in (2.10) are satisfied if we have

Am1+p1

1 ρ1a
p1+1

p1+m1−1

1 ≤ Aq1
2 a

q1(p2+1)
p2+m2−1

2 ,(2.19)

Am2+p2

2 ρ2a
p2+1

p2+m2−1

2 ≤ Aq2
1 a

q2(p1+1)
p1+m1−1

1 ,(2.20)

where ρ1 = m1(
p1+1

p1+m1−1 )
p1+1 > 0, ρ2 = m2(

p2+1
p2+m2−1 )

p2+1 > 0.

According to (2.18), we see that (2.19) and (2.20) hold provided that A1

and A2 are chosen to satisfy

Am1+2p1+1
1 ρ1ω

p1+1
p1+m1−1

1 ≤ A
q1(p2+2)
2 ω

q1(p2+1)
p2+m2−1

2 ,(2.21)

Am2+2p2+1
2 ρ2ω

p2+1
p2+m2−1

2 ≤ A
q2(p1+2)
1 ω

q2(p1+1)
p1+m1−1

1 .(2.22)

The condition q1q2 > (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) ensures that we can take A1 and

A2 large enough such that the inequalities (2.21) and (2.22) are valid.
Therefore, if the initial data u0, v0 are large enough so that u0(x) ≥ u(x, 0)

and v0(x) ≥ v(x, 0), then (u, v) is a subsolution to (1.1)-(1.3). By the compar-
ison principle, it implies that the solutions of (1.1)-(1.3) with large initial data
blow up in a finite time. The proof is complete. □

3. Critical Fujita curve

We devote this section to proof of Theorem 1.2. We borrow some ideas from
[8, 10] to construct suitable auxiliary functions, however, the fact that we are
dealing with a system instead of a single equation forces us to develop some
new techniques.

Proof of Theorem 1.2 (1). We construct the following well-known self-similar
solution (the so-called Zel’dovich-Kompaneetz-Barenblatt profile [8, 13, 24]) to
(1.1)-(1.3) in the form

uB(x, t) = (τ + t)−
1

m1+2p1+1h1(ξ), ξ = x(τ + t)−
1

m1+2p1+1 ,(3.1)

vB(x, t) = (τ + t)−
1

m2+2p2+1h2(η), η = x(τ + t)−
1

m2+2p2+1 ,(3.2)

where τ > 0 and

h1(ξ) = C1(h
p1+2
p1+1

1 − ξ
p1+2
p1+1 )

p1+1
p1+m1−1

+ , h2(η) = C2(h
p2+2
p2+1

2 − η
p2+2
p2+1 )

p2+1
p2+m2−1

+ ,

(3.3)

with h1 > 0, h2 > 0 and

C1 = (
1

m1(m1 + 2p1 + 1)
(
p1 +m1 − 1

p1 + 2
)p1+1)

1
p1+m1−1 ,(3.4)

C2 = (
1

m2(m2 + 2p2 + 1)
(
p2 +m2 − 1

p2 + 2
)p2+1)

1
p2+m2−1 .(3.5)
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It is not difficult to check that

(|h′
1|p1(hm1

1 )′)′(ξ) +
1

m1 + 2p1 + 1
ξh′

1(ξ) +
1

m1 + 2p1 + 1
h1(ξ) = 0, h′

1(0) = 0,

(|h′
2|p2(hm2

2 )′)′(η) +
1

m2 + 2p2 + 1
ηh′

2(η) +
1

m2 + 2p2 + 1
h2(η) = 0, h′

2(0) = 0.

Since u(x, t) and v(x, t) are nontrivial and nonnegative, we see that u(0, t0) >
0 and v(0, t0) > 0 for some t0 > 0 (compare with a Barenblatt solution of
the corresponding equations). Noticing that u(x, t0 > 0), v(x, t0) > 0 are
continuous (see [9, 31]), there exists τ > 0 large enough and h1, h2 small enough
such that

u(x, t0) > uB(x, t0), v(x, t0) > vB(x, t0) for x > 0.

A direct calculation shows that (uB(x, t), vB(x, t)) is a weak subsolution of
(1.1)-(1.3) in (0,+∞)× (t0,+∞). By the comparison principle, we obtain that

u(x, t) > uB(x, t), v(x, t) > vB(x, t) for x > 0, t > t0.

Since max{l1 − k1, l2 − k2} < 0, we get T l1 ≪ T k1 and T l2 ≪ T k2 for large T .
Furthermore, there exists t∗ ≥ t0 satisfying

T l1 ≪ (τ + t∗)
1

m1+2p1+1 ≪ T k1 , T l2 ≪ (τ + t∗)
1

m2+2p2+1 ≪ T k2 .(3.6)

Let u, v be the functions defined as in the proof of Theorem 1.1(2). Then for
any x > 0,

u(x, 0) ≤ uB(x, t
∗) ≤ u(x, t∗), v(x, 0) ≤ vB(x, t

∗) ≤ v(x, t∗).

It follows from the comparison principle that

u(x, t) ≤ u(x, t+ t∗), v(x, t) ≤ v(x, t+ t∗) for x > 0, t > 0.

As the proof of Theorem 1.1(2), we see that (u, v) blows up in a finite time T .
Therefore, (u1, u2) blows up in a finite time which is not larger than T + t∗.
Observing that (3.6) holds for general nontrivial (u0, v0), and we know that
every nonnegative, nontrivial solution of (1.1)-(1.3) blows up in finite time.

(2) Set

u(x, t) = (τ + t)−k1F1(ξ), ξ = x(τ + t)−l1 ,(3.7)

v(x, t) = (τ + t)−k2F2(η), η = x(τ + t)−l2 ,(3.8)

where ki, li(i = 1, 2) were defined as before, T is a positive constant and F1, F2

are two compactly supported functions to be determined.
After some computations, we have

ut = (τ + t)−(k1+1)(−k1F1(ξ)− l1ξF1
′(ξ)),

|ux|p1(um1)x = (τ + t)−p1k1−p1l1−m1k1−l1 |F1
′|p1(Fm1

1 )′(ξ),

(|ux|p1(um1)x)x = (τ + t)−p1k1−p1l1−m1k1−2l1(|F1
′|p1(Fm1

1 )′(ξ))′,

vt = (τ + t)−(k2+1)(−k2F2(η)− l2ηF2
′(η)),
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|vx|p2(vm2)x = (τ + t)−p2k2−p2l2−m2k2−l2 |F2
′|p2(Fm2

2 )′(η),

(|vx|p2(vm2)x)x = (τ + t)−p2k2−p2l2−m2k2−2l2(|F2
′|p2(Fm2

2 )′(η))′.

and

|ux|p1(um1)x(0, t) = (τ + t)−p1k1−p1l1−m1k1−l1 |F1
′|p1(Fm1

1 )′(0),

|vx|p2(vm2)x(0, t) = (τ + t)−p2k2−p2l2−m2k2−l2 |F2
′|p2(Fm2

2 )′(0),

vq1(0, t) = (τ + t)−k2q1F2
q1(0), uq2(0, t) = (τ + t)−k1q2F1

q2(0).

Notice that

k1 + 1 = p1k1 + p1l1 +m1k1 + 2l1, p1k1 + p1l1 +m1k1 + l1 = k2q1,

k2 + 1 = p2k2 + p2l2 +m2k2 + 2l2, p2k2 + p2l2 +m2k2 + l2 = k1q2.

Thus, (u, v) is supsolution of (1.1)-(1.3) provided that{
(|F1

′|p1(Fm1
1 )′(ξ))′ + k1F1(ξ) + l1F

′
1(ξ)ξ ≤ 0,

(|F2
′|p2(Fm2

2 )′(η))′ + k2F2(η) + l2F
′
2(η)η ≤ 0,

(3.9)

{
−|F1

′|p1(Fm1
1 )′(0) ≥ F2

q1(0),
−|F2

′|p2(Fm2
2 )′(0) ≥ F1

q2(0),
(3.10)

we choose

F1(ξ) = A1C1((a1b1)
p1+2
p1+1 − (ξ + a1)

p1+2
p1+1 )

p1+1
p1+m1−1

+ = A1h1(ξ + a1),(3.11)

F2(η) = A2C2((a2b2)
p2+2
p2+1 − (η + a2)

p2+2
p2+1 )

p2+1
p2+m2−1

+ = A2h2(η + a2),(3.12)

where C1 and C2 were defined by (3.4) and (3.5), h1 and h2 were defined by
(3.3), ai > 0, bi > 1, Ai > 0 (i = 1, 2). We claim that exist Ai, bi, ai (i = 1, 2)
such that the inequalities (3.9) are valid for F1, F2 defined by (3.10) and (3.11),
then h1(ξ + a1) and h2(η + a2) satisfy the following equations

(|h′
1|p1(hm1

1 )′)′ = − 1

m1 + p1 + 1
(ξ + a1)h

′
1 −

1

m1 + p1 + 1
h1,(3.13)

(|h′
2|p2(hm2

2 )′)′ = − 1

m2 + p2 + 1
(η + a2)h

′
2 −

1

m2 + p2 + 1
h2(3.14)

and

h′
1(ξ + a1)(3.15)

= − C1
p1 + 2

p1 +m1 − 1
((a1b1)

p1+2
p1+1 − (ξ + a1)

p1+2
p1+1 )

p1+1
p1+m1−1−1

+ (ξ + a1)
1

p1+1 ,

h′
2(η + a2)(3.16)

= − C2
p2 + 2

p2 +m2 − 1
((a2b2)

p2+2
p2+1 − (η + a2)

p2+2
p2+1 )

p2+1
p2+m2−1−1

+ (η + a2)
1

p2+1 .
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In fact, when a1 ≤ ξ + a1 ≤ b1a1 and a2 ≤ ξ + a2 ≤ b2a2, substituting (3.11)-
(3.16) into (3.9), denote by y = ξ+a1, z = η+a2, then (3.9) can be transformed
into the following inequality with respect y, z

G1(y) = −e1y
p1+2
p1+1 + e2a1y

1
p1+1 − e3(a1b1)

p1+2
p1+1 ≤ 0,(3.17)

G2(z) = −θ1y
p2+2
p2+1 + θ2a2y

1
p2+1 − θ3(a2b2)

p2+2
p2+1 ≤ 0,(3.18)

where

e1 = (k1 −
Am1+p1−1

1

m1 + p1 − 1
) +

p1 + 2

p1 +m1 − 1
(l1 −

Am1+p1−1
1

m1 + p1 − 1
),

e2 =
l1(p1 + 2)

p1 +m1 − 1
,

e3 =
Am1+p1−1

1

m1 + p1 − 1
− k1,

θ1 = (k2 −
Am2+p2−1

2

m2 + p2 − 1
)− p2 + 2

p2 +m2 − 1
(l2 −

Am2+p2−1
2

m2 + p1 − 1
),

θ2 =
l2(p2 + 2)

p2 +m2 − 1
,

θ3 =
Am2+p2−1

2

m2 + p2 − 1
− k2.

Since min{l1 − k1, l2 − k2} > 0, we can choose a suitable constant A1 > 0 such

that l1 >
A

m1+p1−1
1

m1+p1−1 > k1 and (k1 − A
m1+p1−1
1

m1+p1−1 ) +
p1+2

p1+m1−1 (l1 − A
m1+p1−1
1

m1+p1−1 ) >

0 for such A1, it is easy to verify that ei > 0 (i = 1, 2, 3) and G1(y) is a

concave function with respect to y
1

p1+1 , then G1(y) attains its maximum at
z∗ = e2a1

(p1+2)e1
. Therefore, (3.16) is valid provided that

G1(z∗) = a
p1+2
p1+1

1

{
p1 + 1

p1 + 2

(
1

e1(p1 + 2)

) 1
p1+1

e
p1+2
p1+1

2 − e3b
p1+2
p1+1

1

}
≤ 0.(3.19)

So, we only need to choose b1 sufficiently large such that

b1 ≥ max

{(
(p1 + 1)e2
(p+ 2)e3

) p1+1
p1+2

(
e2

(p+ 2)e1

) 1
p1+2

, 1

}
.

Similarly, there exist A2 > 0, b2 > 0 such that the inequality (3.17) holds.
Consequently, we have proved that inequalities (3.9) are true.

Now we consider the boundary condition (3.10), we only need to show that

(A1C1)
m1+p1m1(

p2 + 2

p1 +m1 − 1
)p1+1(b

p1+2
p1+1

1 − 1)
p1+1

p1+m1−1 a
2p1+m1+1
p1+m1−1

1

≥ (A2C2)
q1(b

p2+2
p2+1

2 − 1)
p2+1

p2+m2−1 a
(p2+2)q1
p2+m2−1

2 ,



CRITICAL EXPONENTS 525

(A2C2)
m2+p2m2(

p2 + 2

p2 +m2 − 1
)p2+1(b

p2+2
p2+1

2 − 1)
(p2+1)

p2+m2−1 a
2p2+m2+1
p2+m2−1

2

≥ (A1C1)
q2(b

p1+2
p1+1

1 − 1)
p1+1

p1+m1−1 a
(p1+2)q2
p1+m1−1

1 ,

where C1 and C2 were defined by (3.4) and (3.5). For above choosed Ai, di (i =

1, 2), the assumption q1q2 > (2p1+m1+1)(2p2+m2+1)
(p1+2)(p2+2) ensures that there exist a2

and a1 small enough such that the above inequalities hold.
Therefore, it follows from the comparison principle that (u, v) given by (3.7)

and (3.8) is a supersolution of the system (1.1)-(1.3) with u(x, 0) ≥ u0(x),
v(x, 0) ≥ v0(x), which means that the solutions of (1.1)-(1.3) with small initial
data have global existence. The proof of Theorem 1.2 is complete. □
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