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THE BRÜCK CONJECTURE AND ENTIRE FUNCTIONS

SHARING POLYNOMIALS WITH

THEIR k-TH DERIVATIVES

Feng Lü and Hongxun Yi

Abstract. The purpose of this paper is twofold. The first is to establish
a uniqueness theorem for entire function sharing two polynomials with its
k-th derivative, by using the theory of normal families. Meanwhile, the

theorem generalizes some related results of Rubel and Yang and of Li and
Yi. Several examples are provided to show the conditions are necessary.
The second is to generalize the Brück conjecture with the idea of sharing
polynomial.

1. Introduction and main results

The subject on sharing values between entire functions and their derivatives
was first studied by Rubel and Yang [11]. They proved a result in 1977 that if a
non-constant entire function f and its first derivative f ′ share two distinct finite
numbers a, b CM, then f = f ′. Since then, shared value problems, especially
the case of f and f ′ sharing two values, have been studied by many authors
and a number of profound results have been obtained (see, e.g., [1, 3, 10]). To
state our main result, we need the following concepts.

Let f and g be two non-constant meromorphic functions in the complex plane
C, and let P be a polynomial or a finite complex number. If g(z) − P (z) = 0
whenever f(z) − P (z) = 0, we write f(z) = P ⇒ g(z) = P. Provided that
f(z) = P ⇒ g(z) = P and g(z) = P ⇒ f(z) = P , we write f(z) = P ⇔ g(z) =
P and say that f and g share P IM (ignoring multiplicity). If f −P and g−P
have the same zeros with the same multiplicities, we write f(z) = P ⇌ g(z) =
P and say that f and g share P CM (counting multiplicity). It is assumed
that the reader is familiar with the standard symbols and fundamental results
of Nevanlinna theory, as found in [5, 13].
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In 2006, Li and Yi [8] generalized the above result with the idea of “partially”
sharing values. Here, we say that a meromorphic function f “partially” shares
a value a with a meromorphic function g if f(z) = a ⇒ g(z) = a or g(z) = a ⇒
f(z) = a. In fact, they proved the following result.

Theorem A. Let a and b be complex numbers such that b ̸= a, 0, and let f
be a non-constant entire function. If f(z) = a ⇒ f ′(z) = a and f(z) = b ⇌
f ′(z) = b, then one of the following cases must occur:

(1) f = f ′,

(2) f = Ce
b

b−a z + a,
where C is a non-zero constant.

Recently, Lü, Xu and Chen [7] improved Theorem A with the idea of sharing
polynomials. They proved the following result.

Theorem B. Let Q1(̸= 0) and Q2 be two distinct polynomials, and let f be a
transcendental entire function. If f(z) = Q1 ⇌ f ′(z) = Q1 and f(z) = Q2 ⇒
f ′(z) = Q2, then one of the following cases must occur:

(1) f = f ′;
(2) f(z) = Q2(z) + Aeλz and (λ − 1)Q1 = λQ2 − Q′

2, where A and λ ̸= 1
are two non-zero constants.

It’s nature to ask what will happen if the first derivative f ′ in Theorem A is
replace by the general derivative f (k). By considering the problem, we obtain
a result as follows, which is an improvement of Theorem B.

Theorem 1.1. Let Q1( ̸= 0) and Q2 be two distinct polynomials, let k be a
positive integer, and let f be a transcendental entire function with all the zeros
of f − Q2 have multiplicity at least k. If f(z) = Q1 ⇌ f (k)(z) = Q1 and
f(z) = Q2 ⇒ f (k)(z) = Q2, then one of the following cases must occur:

(1) f = f (k);

(2) f(z) = Q2(z) + Aeλz and (µ − 1)Q1 = µQ2 − Q
(k)
2 , where A and λk =

µ ̸= 1 are two nonzero constants.

Remark 1.1. If a is a Picard value of f , we say that the zeros of f − a have
multiplicity ∞. In (2) of Theorem 1.1, it’s easy to see that 0 is a Picard value
of f − Q2. If we add the condition f − Q2 has at least one zero in Theorem
1.1, then f has only one case f = f (k).

Remark 1.2. The hypothesis f is transcendental cannot be omitted in Theorem
1.1, as is shown by the following example.

Example 1. Let f(z) = z2, Q1(z) = 2z2 − 2z and Q2 = 0. Then

f ′ −Q1

f −Q1
= 2 and f = 0 ⇒ f ′ = 0,

while it does not satisfy any case of Theorem 1.1.
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Remark 1.3. We add two examples here to point out that the case (2) in
Theorem 1.1 cannot be deleted.

Example 2. Let f(z) = Ae
z
2 + z, Q1(z) = 2− z and Q2(z) = z. Then

f ′ −Q1

f −Q1
=

1

2
and f ̸= Q2.

Thus, it satisfies the assumption of Theorem 1.1. We have k = 1 and λ = µ = 1
2 .

Example 3. Let f(z) = z +Ae
√
2z, Q1(z) = 2z and Q2(z) = z. Then

f ′′ −Q1

f −Q1
= 2 and f ̸= Q2.

Thus, it satisfies the assumption of Theorem 1.1. We have k = 2, λ =
√
2 and

µ = 2.

Remark 1.4. From (1) in Theorem 1.1, we can get the forms of f .

Theorem 1.2. Let f be a non-constant entire function and k be a positive
integer, let Q be a polynomial, and all the zeros of f − Q have multiplicity at
least k. If f = f (k), then one of the following cases must occur:

(1) k = 1 and f(z) = Aez, where A is a non-zero constant;
(2) k = 2, Q reduces to a constant. If Q = 0, then f(z) = Aeλz, where

λ2 = 1 and A is a non-zero constant; If Q = a, here a is a non-zero constant,
then f(z) = C0e

z + C1e
−z, where C0, C1 are non-zero constants satisfying

C0C1 = a2/4;
(3) k ≥ 3, Q reduces to 0, and f(z) = Aeλz, where λk = 1 and A is a

non-zero constant.

Remark 1.5. If Q is a non-constant polynomial in Theorem 1.2, we can deduce
that k = 1 and f = Aez, where A is a non-zero constant.

Remark 1.6. The condition that all the zeros of f−Q have multiplicity at least
k is necessary in Theorem 1.2, as is shown by the following example.

Example 4. Let f(z) = ez + e−z and Q = 4. When k = 2, we have f = f ′′

and all the zeros of f −Q have multiplicity at least 1. Obviously, C0C1 = 1 ̸=
Q2/4 = 4, thus f does not satisfy any case of Theorem 1.2.

The following corollary is an immediately consequence of Theorem 1.1 and
Theorem 1.2.

Corollary 1.1. Let Q1(̸= 0) be a polynomial and b be a constant, let f be a
transcendental entire function with all the zeros of f − b have multiplicity at
least k. If f(z) = Q1 ⇌ f (k)(z) = Q1 and f(z) = b ⇒ f (k)(z) = b, then one of
the following cases must occur:

(1) f(z) = Aeλz, where λk = 1 and A is a non-zero constant;
(2) k = 2, b ̸= 0 and f(z) = C0e

z + C1e
−z, where C0, C1 are non-zero

constants satisfying C0C1 = b2/4;
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(3) Q1 reduces to a constant, say a, and f(z) = Ae
a

a−b z + b, where A is a
non-zero constant and b ̸= 0.

About Theorem 1.1, the ideas of our proofs are similar as the formers in [7]
and the key is to obtain the conclusion that f is of finite order. For the further
study of this kind of problems, we obtain a more general result, which is of
independent interest.

Theorem 1.3. Let f be a non-constant meromorphic function with finitely
many poles, let k be a positive integer, and let α = Q1e

Q and β = Q2e
Q, here

Q1, Q2( ̸= Q1) and Q are three polynomials. If all the zeros of f − α have
multiplicities at least k,

f(z) = α(z) ⇒ f (k)(z) = α(z) and f(z) = β(z) ⇔ f (k)(z) = β(z),

then f(z) is of finite order.

2. Some results of the Brück conjecture

How is the relation between f and f ′ if an entire function f shares one value
CM with its first derivative f ′? An important problem in this direction is the
following conjecture proposed by Brück in [1].

Conjecture. Let f be a non-constant entire function such that the hyper-order
σ2(f) of f is not a positive integer and σ2(f) < ∞. If f and f ′ share a finite
value a CM, then

f ′ − a

f − a
= c,

where c is non-zero constant. Here, σ2(f) is defined by

σ2(f) = lim
r→∞

log log T (r, f)

log r
.

The conjecture for the case a = 0 had been proved by R. Brück in [1]. From
differential equations

(2.1)
f ′ − a

f − a
= ez

n

,
f ′ − a

f − a
= ee

z

,

we see that when the hyper-order σ2(f) is a positive integer or infinite, the
conjecture does not hold.

The conjecture for the case that f is of finite order had been proved by
Gundersen and Yang [3], the case that f is of infinite order with σ2(f) < 1

2

had been proved by Chen and Shon [2]. But the case σ2(f) ≥ 1
2 is still open.

Under some additional assumptions, there are many results related to the
Brück conjecture, see, e.g., [12, Theorem 1], [17, Theorem 1] and [18, Theorem
1.1].

It is interesting to ask what happens if f is replaced by fn in the Brück
conjecture. From (2.1), we see that the conjecture does not hold when n = 1.
Thus, we only need to discuss the problem when n ≥ 2. Recently, Yang and
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Zhang [14] proved that the Brück conjecture holds for the function fn, and the
order restriction on f does not needed if n is relatively large. Actually, they
proved the following result.

Theorem B. Let f be a non-constant entire function, n ≥ 7 be an integer,
and let F = fn. If F and F ′ share 1 CM, then F = F ′ and f assumes the
form

f(z) = ce
1
n z,

where c is a non-zero constant.

Very recently, in Zhang’s doctoral dissertation [16] he obtained a general
result.

Theorem C. Let f be a non-constant entire function, let n and k be two
integers with n ≥ k + 1, and let F = fn. If F and F (k) share 1 CM, then
F = F (k) and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λk = 1.

In the following, we continue to study the class of special functions F = fn,
and replace the constant a by a polynomial Q. We have the next conclusion.

Theorem 2.1. Let f be a transcendental entire function, let n and k be two
integers with n ≥ k + 1, and let F = fn and Q ̸= 0 be a polynomial. If F and
F (k) share Q CM, then F = F (k) and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λk = 1.

Remark 2.1. Obviously, all the zeros of F have multiplicity at least k + 1 in
Theorem 2.1. Thus, by Corollary 1.1, it’s easy to deduce Theorem 2.1.

Remark 2.2. We give an example to show the hypothesis that f is transcen-
dental is necessary in Theorem 2.1.

Let f(z) = z and Q(z) = 2z2 − 2z, and let n = 2, k = 1. Then F (z) =
f2(z) = z2 and

F ′ −Q

F −Q
= 2,

but F ̸= F ′.

Remark 2.3. In Theorem 2.1, ifQ is a constant, the condition that f is transcen-
dental can be omitted. Thus, for the special case F = fn, the Brück conjecture
is true. Meanwhile, Theorem 2.1 improves Theorem B and Theorem C.

Remark 2.4. It’s easy to deduce that the conjecture holds for the class of special
functions F = fn with n ≥ 2.
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Theorem 2.2. Let f be a non-constant entire function, let n and k be two
integers with n ≥ k + 1, and let F = fn and Q ̸= 0 be a polynomial. If F and
F (k) share Q CM, then

F (k) −Q

F −Q
= c,

where c is a non-zero constant.

Remark 2.5. In fact, by Theorem 2.1, we need only to prove Theorem 2.2 holds
when f is a polynomial. Obviously, it holds.

3. Some lemmas

In order to prove our theorems, we need the following lemmas.

Lemma 3.1 ([7]). Let {fn} be a family of functions meromorphic (analytic)
on the unit disc △. If an → a, |a| < 1, and f ♯

n(an) → ∞, then there exist
(a) a subsequence of fn (which we still write as {fn});
(b) points zn → z0 |z0| < 1;
(c) positive numbers ρn → 0

such that fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly, where g is a non-
constant meromorphic (entire) function on C, such that

ρn ≤ M

f ♯
n(an)

,

where M is a constant which is independent of n.

Here, as usual, g♯(ξ) = |g′(ξ)|
1+|g(ξ)|2 is the spherical derivative.

Lemma 3.2 ([6]). Let f be a meromorphic function of infinite order on C.
Then there exist points zn → ∞, such that for every N > 0, f ♯(zn) > |zn|N if
n is sufficiently large.

Lemma 3.3 ([9, Corollary 1.4]). Let f be a non-constant entire function of
hyper-order σ2(f) < 1, and let Q ̸= 0 and P be two polynomials. If f is a
solution of the differential equation

f (k) −Q

f −Q
= eP ,

then P must be a constant.

4. Proof of Theorem 1.3

In the following, we will prove the theorem, and some ideas of the result are
based on [4].

Let H = f − α. Then we have that all the zeros of H have multiplicities at
least k and

H = 0 ⇒ H(k) = α− α(k), H = β − α ⇔ H(k) = β − α(k),
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here α(k) = P1e
Q and P1 is a polynomial. Let

γ = β − α = (Q2 −Q1)e
Q = PeQ

and

θ = β − α(k) = (Q2 − P1)e
Q = P2e

Q.

Define F = H
γ . We now proceed the proof by distinguishing two cases.

Case 1. F is of finite order.
Hence f = Fγ + α is of finite order as well.
Case 2. F is of infinite order.
By Lemma 3.2, there exist wn → ∞, such that for every N > 0, if n is

sufficiently large

(4.1) F ♯(wn) > |wn|N .

First we structure a family of holomorphic functions.
Since f has only finitely many poles, then H = f −α has only finitely many

poles. Obviously, γ = PeQ has only finitely many zeros. So there exists a
r > 0 such that H(z) is analytic and γ(z) ̸= 0 in D = {z : |z| ≥ r}. It is

easy to obtain that F (z) = H(z)
γ(z) is analytic in D. In view of wn → ∞ as

n → ∞, without loss of generality, we may assume |wn| ≥ r + 1 for all n.
Define D1 = {z : |z| < 1} and

Fn(z) = F (wn + z) =
H(wn + z)

γ(wn + z)
.

Noting that |wn| ≥ r + 1 for all n, then we have, for each z ∈ D1,

|wn + z| ≥ |wn| − |z| ≥ r,

which implies that wn+z ∈ D for each z ∈ D1. Observing that F (z) is analytic
in D, so Fn(z) = F (wn+ z) is analytic in D1. Therefore, all Fn(z) are analytic
in D1. Thus, we have structured a family (Fn)n of holomorphic functions.

In what follows, we prove that (Fn)n is normal at z = 0, here

Fn(z) = F (wn + z) =
H(wn + z)

γ(wn + z)
.

Otherwise, we can apply Lemma 3.1. Choosing an appropriate subsequence
of (Fn)n if necessary, we may assume that there exist sequence (zn)n ∈ D1 and
(ρn)n such that |zn| < r < 1, ρn → 0 and

(4.2) gn(ζ) = Fn(zn + ρnζ) =
H(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(ζ)

locally uniformly in C, where g is a non-constant entire function, whose zeros
have multiplicity at least k and

(4.3) ρn ≤ M

F ♯
n(0)

=
M

F ♯(wn)
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for a positive number M . From (4.1) and (4.3), we deduce that, for every
N > 0, if n is sufficiently large,

(4.4) ρn ≤ M |wn|−N .

We claim that

(4.5) ρkn
H(k)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(k)(ζ).

We will use the mathematical induction to prove the claim. By (4.2), the claim
is right when k = 0. We assume that the claim is right when k = l, that is

ρln
H(l)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(l)(ζ).

Now we prove the claim is also right when k = l + 1. Let

Gn(ζ) = ρln
H(l)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
,

then

G′
n(ζ)

= ρl+1
n

H(l+1)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
− ρl+1

n

H(l)(wn + zn + ρnζ)γ
′(wn + zn + ρnζ)

γ(wn + zn + ρnζ)2

= ρl+1
n

H(l+1)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
− ρn

Gn(ζ)γ
′(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(l+1)(ζ).

Note that (4.4), we deduce

ρn
Gn(ζ)γ

′(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
= ρn

Gn(ζ)(P
′ + PQ′)(wn + zn + ρnζ)

P (wn + zn + ρnζ)
→ 0.

Then

ρl+1
n

H(l+1)(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(l+1)(ζ).

So we complete the proof of the claim.
Obviously, g(k) ̸= 0, for otherwise g would be a polynomial of degree less

than k, and so could not have zeros of multiplicity at least k. In the following,
we will prove

(1) g = 0 ⇒ g(k) = 0,
(2) g = 1 ⇔ g(k) = 0.
Firstly, we prove (1). Suppose that g(ζ0) = 0, then by Hurwitz’s theorem,

there exists a sequence (ζn)n, ζn → ζ0 such that (for n sufficiently large)

gn(ζn) =
H(wn + zn + ρnζn)

γ(wn + zn + ρnζn)
= 0.

Thus H(wn + zn + ρnζn) = 0 and

H(k)(wn + zn + ρnζn) = (Q1 − P1)e
Q(wn + zn + ρnζn).
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By (4.4) and (4.5) we derive that

g(k)(ζ0) = lim
n→∞

ρkn
H(k)(wn + zn + ρnζn)

γ(wn + zn + ρnζn)

= lim
n→∞

ρkn
(Q1 − P1)(wn + zn + ρnζn)

P (wn + zn + ρnζn)
= 0.

Thus g(ζ) = 0 ⇒ g(k)(ζ) = 0. It’s (1).
Similarly, we can prove g = 1 ⇒ g(k) = 0. Now, we prove

g(k) = 0 ⇒ g = 1.

From (4.4) and (4.5), we have

(4.6) ρkn
H(k)(wn + zn + ρnζ)− θ(wn + zn + ρnζ)

γ(wn + zn + ρnζ)
→ g(k)(ζ).

Suppose that g(k)(η0) = 0, we know g(k) ̸= 0. Hence by (4.6) and Hurwitz’s
theorem, there exists a sequence (ηn)n, ηn → η0 such that (for n sufficiently
large)

H(k)(wn + zn + ρnηn) = θ(wn + zn + ρnηn).

By the assumption, we get H(wn + zn + ρnηn) = γ(wn + zn + ρnηn).
Then

g(η0) = lim
n→∞

H(wn + zn + ρnηn)

γ(wn + zn + ρnηn)
= 1.

Thus, we prove g(k) = 0 ⇒ g = 1 and (2).
From (1) and (2), it’s easy to deduce that g ̸= 0. Thus, we set g = Aeλz.

But it contradicts with g = 1 ⇒ g(k) = 0.
All the foregoing discussion shows that (Fn)n is normal at z = 0.
On the other hand, it follows from the fact F ♯

n(0) = F ♯(wn) → ∞ as n → ∞
and Marty’s criterion that (Fn)n is not normal at z = 0, a contradiction. Hence,
Case 2 cannot occur.

This completes the proof of Theorem 1.3.

5. Proof of Theorem 1.1

From Theorem 1.3, we know that f is of finite order. Thus, the hyper-order
σ2(f) = 0. Then, by Lemma 3.3, we have

(5.1) µ =
f (k) −Q1

f −Q1
,

where µ is a non-zero constant. Rewrite it as

(5.2) f (k) = µf + (1− µ)Q1.

If µ = 1, we obtain f = f (k), which is (1). Now, we assume that µ ̸= 1. Let z0
be a zero of f −Q2, by the assumption we have f (k)(z0) = Q2(z0). Put z0 into
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(5.2), we have

(5.3) Q2(z0)−Q1(z0) = 0.

Note that Q2 − Q1 ̸= 0, we deduce that all the zeros of f − Q2 are the zeros
of Q2 −Q1 and f −Q2 has only finitely many zeros. Set f = Q2 + P1e

Q, here
P1 is a non-zero polynomial and Q is a non-constant polynomial. Then f (k) =

Q
(k)
2 + (P1Q

′k + P2)e
Q and P2 is a polynomial with deg(P2) < deg(P1Q

′k).
Substitute them into (5.2), we deduce that

(5.4) Q
(k)
2 + (P1Q

′k + P2)e
Q = µP1e

Q + µQ2 + (1− µ)Q1.

Then, we get

(5.5) Q
(k)
2 = µQ2 + (1− µ)Q1

and

(5.6) P1Q
′k + P2 = µP1.

From (5.6), we get Q′k = µ and P2 = 0. Thus, Q′ is a constant, say Q′ = λ.
Then Q(z) = λz + b and µ = λk, here b is a constant. So we obtain f(z) =

Q2(z) + P1(z)e
λz+b, f (k) = Q

(k)
2 + (P1λ

k + P2)e
Q. It’s easy to deduce that

deg(P2) = deg(P ′
1). From P2 = 0, we get P1 is a constant. Let P1e

b = A.
Then we have (2).

Hence, we complete the proof of this theorem.

6. Proof of Theorem 1.2

The fact f = f (k) implies that f is of finite order 1. Firstly, we assume
that Q = 0. From the assumptions f = f (k) and all the zeros of f − Q have
multiplicity at least k, it’s easy to deduce that 0 is a Picard value of f . Set
f(z) = Aeλz, A is a non-zero constant. Then, f = f (k) yields λk = 1.

Suppose that k = 1, then, it’s easy to get f(z) = Aez.
In the following, we assume that Q ̸= 0 and k ≥ 2. By solving the differential

equation f = f (k), we have

(6.1) f(z) =
k−1∑
j=0

Cj exp
ωjz,

where ω = exp2πi/k and Cj are constants. Noting that f is non-constant, then
there exist Cj ∈ {C0, C1, . . . , Ck−1} such that Cj ̸= 0. Denote the non-zero
constants in {Cj} by Cjm 0 ≤ jm ≤ k − 1 and m = 0, 1, . . . , s, s ≤ k − 1.
Thus, rewriting (6.1) as

(6.2) f(z) =
s∑

m=0

Cjm expω
jmz .
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Differentiating (6.2) yields

(6.3) f (t)(z) =

s∑
m=0

Cjm(ωjm)t expω
jmz, (t = 1, 2 . . . , k − 1).

Suppose that f − Q has finitely many zeros, then we can set f = Q + Peλz.
By differentiating it k times, we deduce

f (k) = Q(k) + [λkP + λk−1P ′ +H(P ′′, P ′′′, . . . , P (k))]eλz,

where H(P ′′, P ′′′, . . . , P (k)) is the linear combination of P ′′, P ′′′, . . . , P (k).
Substituting the above forms of f and f (k) into f = f (k), we derive that

Q = Q(k), P = λkP + λk−1P ′ +H(P ′, P ′′, . . . , P (k)),

which implies that Q = 0 or Q is transcendental, a contradiction.
Thus, in what follows, we assume that f − Q has infinitely many zeros

zn = rne
θn , where 0 ≤ θn < 2π. Without loss of generality, we may assume

that θn → θ0 and rn → ∞ as n → ∞. Substituting zn into (6.2) and (6.3), we
have

(6.4) f(zn) =
s∑

m=0

Cjm expω
jmzn = Q(zn)

and

(6.5) f (t)(zn) =
s∑

m=0

Cjm(ωjm)t expω
jmzn = Q(t)(zn), (t = 1, 2 . . . , k − 1).

Next, we consider into two cases.
Case 1. s = k − 1.
From (6.4) and (6.5), we have
Q(zn)
Q′(zn)

..

.

Q(k−1)(zn)

=


Cj0 Cj1 · · · Cjk−1

Cj0ω
j0 Cj1ω

j1 · · · Cjk−1
ωjk−1

..

.

Cj0 (ω
j0 )k−1 Cj1 (ω

j1 )k−1 · · · Cjk−1
(ωjk−1 )k−1




expω
j0zn

expω
j1zn

..

.

expω
jk−1zn

 .

We know

det


Cj0 Cj1 · · · Cjk−1

Cj0ω
j0 Cj1ω

j1 · · · Cjk−1
ωjk−1

...
Cj0(ω

j0)k−1 Cj1(ω
j1)k−1 · · · Cjk−1

(ωjk−1)k−1



= Cj0Cj1 · · ·Cjk−1
det


1 1 · · · 1
ωj0 ωj1 · · · ωjk−1

...
(ωj0)k−1 (ωj1)k−1 · · · (ωjk−1)k−1


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= Cj0Cj1 · · ·Cjk−1

∏
0≤q<p≤k−1

(ωjp − ωjq ).

It is a Vandermonde determinant.
Noting that ωjp ̸= ωjq (0 ≤ q < p ≤ k − 1), we obtain that the system of

linear equations of expω
j0zn , expω

j1zn , . . . , expω
jk−1zn has a unique solution.

A routine calculation leads to the solution that

(6.6) expω
jpzn = Lp(Q, Q′, . . . , Q(k−1))(zn), (0 ≤ p ≤ k − 1).

where Lp(Q, Q′, . . . , Q(k−1)) ̸= 0 denotes the linear combination of Q,Q′, . . .,

Q(k−1), which may be different as p changes.
Now, we discuss the solution. Obviously,

(6.7)

|Lp(Q, Q′, . . . , Q(k−1))(zn)| = | expω
jpzn | = exprn cos(θn+

2pπ
k ), (0 ≤ p ≤ k−1).

It is clear that Lp(Q, Q′, . . . , Q(k−1)) is a polynomial. Thus, as n → ∞, by
(6.7) we can deduce that

(6.8) cos(θ0 +
2pπ

k
) = 0, (0 ≤ p ≤ k − 1).

Otherwise, we have cos(θ0 +
2pπ
k ) > 0 or cos(θ0 +

2pπ
k ) < 0.

If cos(θ0+
2pπ
k ) > 0, then we can assume (for n large enough) cos(θn+

2pπ
k ) >

δ, here δ is a small positive number. Thus, as n → ∞, by (6.7) we have

1 =
exprn cos(θn+

2pπ
k )

|Lp(Q, Q′, . . . , Q(k−1))(zn)|
>

exprnδ

|Lp(Q, Q′, . . . , Q(k−1))(zn)|
→ ∞,

a contradiction.
If cos(θ0+

2pπ
k ) < 0, then we can assume (for n large enough) cos(θn+

2pπ
k ) <

−δ, here δ is a small positive number. Thus, as n → ∞, by (6.7) we have

1 =
exprn cos(θn+

2pπ
k )

|Lp(Q, Q′, . . . , Q(k−1))(zn)|
<

exp−rnδ

|Lp(Q, Q′, . . . , Q(k−1))(zn)|
→ 0,

a contradiction.
Observing that 0 ≤ p, q ≤ k − 1, by (6.8), we deduce

(6.9) |2pπ
k

− 2qπ

k
| = π, (0 ≤ p ̸= q ≤ k − 1).

Let p = 0 and q = k − 1. Substitute them into (6.9), we have

2(k − 1) = k,

that is k = 2. Thus, k must be 2.
Now we discuss the equation f = f (k) again when k = 2. From the above

discussion, we can obtain ω0 = 1, ω1 = −1 and

C0e
zn =

Q(zn) +Q′(zn)

2
, C1e

−zn =
Q(zn)−Q′(zn)

2
.
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Thus,

C0C1 =
(Q(zn) +Q′(zn))(Q(zn)−Q′(zn))

4
.

If C0C1 = (Q+Q′)(Q−Q′)
4 , it is obvious that Q deduce to a constant. Set

Q = a, then C0C1 = a2

4 .

If C0C1 ̸= (Q+Q′)(Q−Q′)
4 , then it is not difficult to derive that f−Q has only

finitely many zeros, a contradiction.
Case 2. s < k − 1.
Then, by (6.5), we can choose t = 1, 2, . . . , s+1. Then they form a system

of linearly equation of expω
j0zn , expω

j1zn , . . . , expω
jszn .

Similarly as Case 1, we deduce

(6.10) expω
jpzn = Lp(Q

′, Q′′, . . . , Q(m))(zn), (0 ≤ p ≤ s).

where Lp(Q
′, Q′′, . . . , Q(m)) denotes the linear combination of Q′, Q′′, . . . , Q(m),

which may be different as p changes. Substituting them into (6.4), we have

L(Q′, Q′′, . . . , Q(m))(zn) = Q(zn),

here L(Q′, Q′′, . . . , Q(m)) denotes the linear combination of Q′, Q′′, . . . , Q(m).
Noting that L(Q′, Q′′, . . . , Q(m)) ̸= Q, we deduce that f −Q has only finitely
many zeros, a contradiction.

Hence, we complete the proof of this theorem.

Acknowledgment. The authors are grateful to the referee for his(or her)
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