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REMARKS ON LOGARITHMICALLY REGULARITY

CRITERIA FOR THE 3D VISCOUS MHD EQUATIONS

Xiaochun Chen and Sadek Gala

Abstract. In this paper, logarithmically regularity criteria for the 3D
MHD equations are established in terms of the Morrey-Camapanto space.

1. Introduction

The 3D incompressible viscous MHD equations reads:

(1.1)


∂tu− µ∆u+ u · ∇u+∇p+ 1

2∇|b|2 − b · ∇b = 0,
∂tb− ν∆b+ u · ∇b− b · ∇u = 0,
∇ · u = ∇ · b = 0,
u (x, 0) = u0 (x) , b (x, 0) = b0 (x) ,

where u = u(x, t) ∈ R3 is the velocity field, b ∈ R3 is the magnetic field,
p = p(x, t) is the scalar pressure, µ > 0 is the kinematic viscosity and ν > 0
is the resistivity, while u0 and b0 are given initial velocity and initial magnetic
field with ∇ · u0 = ∇ · b0 = 0 in the sense of distribution. For simplicity, we
assume that the external force has a scalar potential and is included into the
pressure gradient. In what follows, we assume µ = ν = 1 for convenience.

It is well-known [11] that the problem (1.1) is local well-posed for any given
initial datum u0, b0 ∈ Hs(R3), s ≥ 3. But whether this unique local solution
can exist globally is an outstanding challenge problem when n ≥ 3. Some
fundamental Serrin’s-type regularity criteria in term of the velocity only was
done in [5] and [14] independently. Recently, some improvements and exten-
sions were made based on these two basic papers. Part of them are listed here:
Chen, Miao and Zhang [3] did improvement in Besov spaces; Zhou and Gala [19]
proved regularity for u and ∇u in the multiplier spaces; Wu [13] considered the
velocity field being in the homogeneous Besov space; regularity was obtained
by imposing condition on the pressure in [15, 17]; in [16] direction of vorticity
field ω = ∇× u was discussed (see also [5]).
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Recently, for the Navier-Stokes equations (b = 0 in (1.1)), several log im-
provements of the Prodi-Serrin criteria were established in [2, 21, 18, 20] in
terms of the velocity field.

The purpose of this paper is to establish logarithmically improved regularity
criteria in terms of the velocity field or on the gradient of velocity field in terms
of the critical Morrey-Camapanato spaces. We will prove:

Theorem 1.1. Let T > 0 and (u0, b0) ∈ H3
(
R3

)
with ∇·u0 = ∇·b0 = 0. If the

corresponding smooth solution u(x, t) satisfies one of the following conditions

∫ T

0

∥u(t, .)∥
2

1−r
.

M
2, 3

r

1 + ln (e+ ∥u(t, .)∥L∞)
dt < ∞ for some r with 0 < r < 1,(1.2)

∫ T

0

∥∇u(t, .)∥
2

2−r
.

M
2, 3

r

1 + ln (e+ ∥∇u(t, .)∥L∞)
dt < ∞ for some r with 0 < r ≤ 1,(1.3)

then the smooth solution (u, b) can be extended for T ′ > T .

Theorem 1.1 is also true for the 3-D incompressible Navier-Stokes equations,
so they gives improvements and extensions of [2, 18, 20, 21].

Remark 1.1. Since the critical Morrey-Campanato space Ṁ2, 3r
is much wider

than the Lebesgue space L
3
r and the multiplier space

.

Xr hence our result covers
the recent results given by Zhou and Fan [18].

Remark 1.2. The limiting case u ∈ L∞ (
0, T ;L2

)
concerning (2.1) was proved

by Seregin [10], by using an approach completely different from energy-type
estimate and the proof is based on delicate results on backward uniqueness.

2. Preliminaries

Before stating our main result, we recall the definition and some properties
of the space that we are going to use. These spaces play an important role in
studying the regularity of solutions to partial differential equations (see e.g.,
[6], [12]).

Definition 2.1. For 1 < p ≤ q ≤ +∞, the Morrey-Campanato space Ṁp,q is
defined by :
(2.1)

Ṁp,q =

{
f ∈ Lp

loc

(
R3

)
: ∥f∥Ṁp,q

= sup
x∈R3

sup
R>0

R3/q−3/p ∥f∥Lp(B(x,R)) < ∞
}
,

where B(x,R) denotes the ball of center x with radius R.

It is easy to verify that Ṁp,q

(
R3

)
is a Banach space under the norm ∥.∥Ṁp,q

.

Furthermore, it is easy to check the following:

∥f(λ.)∥Ṁp,q
=

1

λ
3
q

∥f∥Ṁp,q
, λ > 0.
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Morrey-Campanato spaces can be seen as a complement to Lp spaces. In fact,
for p ≤ q, we have

Lq = Ṁq,q ⊂ Ṁp,q.

We have the following comparison between Lorentz spaces and Morrey-
Campanato spaces: for p ≥ 2,

L
3
r

(
R3

)
⊂ L

3
r ,∞

(
R3

)
⊂ Ṁp, 3r

(
R3

)
⊂

.

Xr

(
R3

)
⊂ Ṁ2, 3r

(
R3

)
,

where Lp,∞ denotes the usual Lorentz (weak Lp) space.
Due to the following lemma given in [8]:

Lemma 2.2. For 0 ≤ r < 3
2 , the space Żr is defined as the space of f(x) ∈

L2
loc

(
R3

)
such that

∥f∥Żr
= sup

∥g∥Ḃr
2,1

≤1

∥fg∥L2 < ∞.

Then f ∈ Ṁ2, 3r
if and only if f ∈ Żr with equivalence of norms.

And the fact that

L2 ∩ Ḣ1 ⊂ Ḃr
2,1 ⊂

.

H
r
for 0 < r < 1,

we have

Ẋr ⊂ Ṁ2, 3r
,

where Ẋr denotes the point-wise multiplier space from Ḣr to L2.
We shall prove the following lemma, which will be employed in the proof of

our result.

Lemma 2.3. For 0 < r < 1, we have

∥f∥Ḃr
2,1

≤ C ∥f∥1−r
L2 ∥∇f∥rL2 .

Proof. The idea comes from [9]. According to the definition of Besov spaces,
one has

∥f∥Ḃr
2,1

=
∑
j∈Z

2jr ∥∆jf∥L2

≤
∑
j≤k

2jr ∥∆jf∥L2 +
∑
j>k

2j(r−1)2j ∥∆jf∥L2

≤

∑
j≤k

22jr

 1
2
∑

j≤k

∥∆jf∥2L2

 1
2

+

∑
j>k

22j(r−1)

 1
2
∑

j>k

22j ∥∆jf∥2L2

 1
2

≤ C
(
2rk ∥f∥L2 + 2k(r−1) ∥f∥Ḣ1

)
= C

(
2rkA−r + 2k(r−1)A1−r

)
∥f∥1−r

L2 ∥f∥rḢ1 ,
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where A =
∥f∥Ḣ1

∥f∥L2
. Choose k such that 2rkA−r ≤ 1, that is, k ≤ [logAr], we

thus obtain

∥f∥Ḃr
2,1

≤ C
(
1 + 2k(r−1)A1−r

)
∥f∥1−r

L2 ∥f∥rḢ1

≤ C ∥f∥1−r
L2 ∥∇f∥rL2 ,

and so the proof is complete. □

3. Proof of Theorem 1.1

In order to prove regularity, we need to establish a priori estimates.
Now, we derive estimates under condition (1.2). We follow the argument

in [18] and do H1 estimates first.
Multiplying the first equation of (1.1) by ∆u, after integration by parts and

taking the divergence free property into account, we have

1

2

d

dt
∥∇u∥2L2 + ∥∆u∥2L2

= −
∫
R3

∂iuk · ∂kuj · ∂iujdx+

∫
R3

∂ibk · ∂kbj · ∂iujdx

−
∫
R3

bk · ∂i∂kuj · ∂ibjdx.(3.1)

Similarly, multiplying the second equation of (1.1) by ∆b, we obtain

1

2

d

dt
∥∇b∥2L2 + ∥∆b∥2L2

= −
∫
R3

∂iuk · ∂kbj · ∂ibjdx+

∫
R3

∂ibk · ∂kuj · ∂ibjdx

+

∫
R3

bk · ∂k∂iuj · ∂ibjdx.(3.2)

Combining (3.1) and (3.2) (cancellation happens) yields

1

2

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+ ∥∆u∥2L2 + ∥∆b∥2L2

= −
∫
R3

∂iuk · ∂kuj · ∂iujdx+

∫
R3

∂ibk · ∂kbj · ∂iujdx

−
∫
R3

∂iuk · ∂kbj · ∂ibjdx+

∫
R3

∂ibk · ∂kuj · ∂ibjdx.(3.3)

Taking integration parts on (3.3) once to taking u out as

1

2

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+ ∥∆u∥2L2 + ∥∆b∥2L2

=

∫
R3

uk · ∂i(∂kuj · ∂iuj)dx−
∫
R3

∂i(∂ibk · ∂kbj) · ujdx

+

∫
R3

uk · ∂i(∂kbj · ∂ibj)dx−
∫
R3

∂k(∂ibk · ∂ibj) · ujdx
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= I + II + III + IV.(3.4)

We do estimate for I + II + III + IV by Hölder’s inequality and Young’s
inequality firstly as

|I + II + III + IV |
≤ C∥u∥ .

M
2, 3

r

∥∇u∥Ḃr
2,1

∥∆u∥L2 + C∥u∥ .
M

2, 3
r

∥∇b∥Ḃr
2,1

∥∆b∥L2

≤ C∥u∥ .
M

2, 3
r

∥∇u∥1−r
L2 ∥∆u∥1+r

L2 + C∥u∥ .
M

2, 3
r

∥∇b∥1−r
L2 ∥∆b∥1+r

L2

≤ C∥u∥
2

1−r
.

M
2, 3

r

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+

1

2

(
∥∆u∥2L2 + ∥∆b∥2L2 .(3.5)

For the first term in the right hand side of (3.5), we have

∥u∥
2

1−r
.

M
2, 3

r

(
∥∇u∥2L2 + ∥∇b∥2L2

)

≤
∥u∥

2
1−r
.

M
2, 3

r

1 + ln (e+ ∥u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

)
(1 + ln (e+ ∥u∥L∞))

≤ C

∥u∥
2

1−r
.

M
2, 3

r

1 + ln (e+ ∥u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

) (
1 + ln

(
e+∥∇3u∥L2+∥∇3b∥L2

))
,

where Sobolev embedding was used.
For any T0 < t ≤ T , we let

(3.6) y(t) := sup
T0≤s≤t

(
∥∇3u∥L2 + ∥∇3b∥L2

)
.

Coming back to (3.4), we get

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+ ∥∆u∥2L2 + ∥∆b∥2L2

≤ C

∥u∥
2

1−r
.

M
2, 3

r

1 + ln (e+ ∥u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

)
(1 + ln(e+ y(t))).(3.7)

Applying Gronwall’s inequality on (3.7) for the interval [T0, t], one has

∥∇u(., t)∥2L2 + ∥∇b(., t)∥2L2

≤
(
∥∇u(., T0)∥2L2 + ∥∇u(., T0)∥2L2

)
× exp

C(1 + ln(e+ y(t)))

∫ t

T0

∥u∥
2

1−r
.

M
2, 3

r

1 + ln (e+ ∥u∥L∞)
ds


≤ C0 exp(Cϵ(1 + ln(e+ y(t)))) ≤ C0 exp(2Cϵ ln(e+ y(t)))

≤ C0(e+ y(t))2Cϵ,(3.8)
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provided that

∫ t

T0

∥u∥
2

1−r
.

M
2, 3

r

1 + ln (e+ ∥u∥L∞)
ds < ϵ ≪ 1,

and where C0 = ∥∇u(., T0)∥2L2 + ∥∇u(., T0)∥2L2 .

Then we go to the estimate for H3 norm. Taking the operation Λ3 = (−∆)
3
2

on both sides of (1.1), then multiplying them by Λ3u and Λ3b respectively, after
integrating over R3, we have

1

2

d

dt

(∥∥Λ3u(t)
∥∥2
L2 +

∥∥Λ3b(t)
∥∥2
L2

)
+
∥∥Λ3∇u(t)

∥∥2
L2 +

∥∥Λ3∇b(t)
∥∥2
L2

= −
∫
R3

Λ3 (u · ∇u) Λ3udx+

∫
R3

Λ3 (b · ∇b) Λ3udx

−
∫
R3

Λ3 (u · ∇b) Λ3bdx+

∫
R3

Λ3 (b · ∇u) Λ3bdx.(3.9)

Noting that ∇ · u = ∇ · b = 0 and integrating by parts, we write (3.9) as

1

2

d

dt

(∥∥Λ3u(t)
∥∥2
L2 +

∥∥Λ3b(t)
∥∥2
L2

)
+
∥∥Λ3∇u(t)

∥∥2
L2 +

∥∥Λ3∇b(t)
∥∥2
L2

(3.10)

=−
∫
R3

[
Λ3(u · ∇u)− u · Λ3∇u

]
Λ3udx−

∫
R3

[
Λ3(u · ∇b)− u · Λ3∇b

]
Λ3bdx

+

∫
R3

[
Λ3(b · ∇b)− b · Λ3∇b

]
Λ3udx+

∫
R3

[
Λ3(b · ∇u)− b · Λ3∇u

]
Λ3bdx

= Π1 +Π2 +Π3 +Π4.

In what follows, we will use the following inequality due to Kenig, Ponce and
Vega [7]:

(3.11) ∥Λα (fg)− fΛαg∥Lp ≤ C
(∥∥Λα−1g

∥∥
Lq1

∥∇f∥Lp1 + ∥Λαf∥Lp2 ∥g∥Lq2

)
,

for α > 1, and 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
.

Hence Π1 can be estimated as

Π1 ≤ C∥∇u∥L3∥Λ3u∥2L3 ≤ C∥∇u∥
13
12

L2∥Λ3u∥
1
4

L2∥Λ4u∥
5
3

L2

≤ 1

6
∥Λ4u∥2L2 + C∥∇u∥

13
2

L2∥Λ3u∥
3
2

L2 ,(3.12)

where we used (3.11) with α = 3, p = 3
2 , p1 = q1 = p2 = q2 = 3, and the

following inequalities

∥∇u∥L3 ≤ C∥∇u∥
3
4

L2∥Λ3u∥
1
4

L2 ,(3.13)

and

∥Λ3u∥L3 ≤ C∥∇u∥
1
6

L2∥Λ4u∥
5
6

L2 .(3.14)
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If we use the existing estimate (3.8) for T0 < t < T , (3.12) reduces to

Π1 ≤ 1

6
∥Λ4u∥2L2 + C0C(e+ y(t))

3
2+

13
2 Cϵ.(3.15)

Similarly, we can do estimate for Π3 as

Π3 ≤ ∥Λ3(b · ∇b)− b · Λ3∇b∥
L

3
2
∥Λ3u∥L3

≤ C∥∇b∥L3∥Λ3b∥L3∥Λ3u∥L3

≤ C
(
∥∇b∥

3
4

L2∥Λ3b∥
1
4

L2

)(
∥∇b∥

1
6

L2∥Λ4b∥
5
6

L2

)(
∥∇u∥

1
6

L2∥Λ4u∥
5
6

L2

)
≤ C∥∇b∥

3
4

L2∥Λ3b∥
1
4

L2 (∥∇u∥L2 + ∥∇b∥L2)
1
3
(
∥Λ4u∥L2 + ∥Λ4b∥L2

) 5
3

≤ C (∥∇u∥L2 + ∥∇b∥L2)
1
3+

3
4 ∥Λ3b∥

1
4

L2

(
∥Λ4u∥L2 + ∥Λ4b∥L2

) 5
3

≤ 1

6

(
∥Λ4u∥2L2 + ∥Λ4b∥2L2

)
+ C (∥∇u∥L2 + ∥∇b∥L2)

13
2 ∥Λ3b∥

3
2

L2

≤ 1

6

(
∥Λ4u∥2L2 + ∥Λ4b∥2L2

)
+ C0C(e+ y(t))

3
2+

13
2 Cϵ.(3.16)

Using (3.13) and (3.14) again, we have

Π2 +Π4 ≤ C
(
∥∇b∥L3∥Λ3u∥L3 + ∥∇u∥L3∥Λ3b∥L3

)
∥Λ3b∥L3

≤ C (∥∇b∥L3 + ∥∇u∥L3)
(
∥Λ3b∥2L3 + ∥Λ3u∥2L3

)
≤ 1

6

(
∥Λ4u∥2L2 + ∥Λ4b∥2L2

)
+ C0C(e+ y(t))

3
2+

13
2 Cϵ.(3.17)

Combining (3.10), (3.15), (3.16) and (3.17), we easily get

d

dt

(∥∥Λ3u(t)
∥∥2
L2 +

∥∥Λ3b(t)
∥∥2
L2

)
≤ C0C(e+ y(t))

3
2+

13
4 Cϵ.

Gronwall’s inequality implies the boundness of H3-norm of u and b provided
that ϵ < 1

13C , which can be achieved by the absolute continuous property of
integral (1.2).

This completes the proof under condition (1.2).
Then, we go to the proof for Theorem 1.1 under (1.3). First, we assume

0 < r < 1. We start from (3.3),

1

2

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+ ∥∆u∥2L2 + ∥∆b∥2L2

= −
∫
R3

∂iuk · ∂kuj · ∂iujdx+

∫
R3

∂ibk · ∂kbj · ∂iujdx

−
∫
R3

∂iuk · ∂kbj · ∂ibjdx+

∫
R3

∂ibk · ∂kuj · ∂ibjdx

≤ C∥∇u∥ .
M

2, 3
r

∥∇u∥Ḃr
2,1

∥∇u∥L2 + C∥∇u∥ .
M

2, 3
r

∥∇b∥Ḃr
2,1

∥∇b∥L2

≤ C∥∇u∥ .
M

2, 3
r

(
∥∇u∥2−r

L2 ∥∆u∥rL2 + ∥∇b∥2−r
L2 ∥∆b∥rL2

)
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≤ 1

2

(
∥∆u∥2L2 + ∥∆b∥2L2

)
+ C∥∇u∥

2
2−r
.

M
2, 3

r

(
∥∇u∥2L2 + ∥∇b∥2L2

)
.

Therefore, we have

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
≤ C∥∇u∥

2
2−r
.

M
2, 3

r

(
∥∇u∥2L2 + ∥∇b∥2L2

)

≤ C

∥∇u∥
2

2−r
.

M
2, 3

r

1 + ln(e+ ∥∇u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

)
(1 + ln(e+ ∥∇u∥L∞))

≤ C

∥∇u∥
2

2−r
.

M
2, 3

r

1 + ln(e+ ∥∇u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

)
(1 + ln(e+ y(t))),(3.18)

where y(t) is defined by (3.6).
Applying Gronwall’s inequality on (3.18) for the interval [T0, t], one has

∥∇u(., t)∥2L2 + ∥∇b(., t)∥2L2 ≤ C0 exp(Cϵ(1 + ln(e+ y(t))))

≤ C0 exp(2Cϵ ln(e+ y(t)))

≤ C0(e+ y(t))2Cϵ,(3.19)

provided that ∫ t

T0

∥∇u∥
2

2−r
.

M
2, 3

r

1 + ln (e+ ∥∇u∥L∞)
ds < ϵ ≪ 1,

and where C0 = ∥∇u(., T0)∥2L2 + ∥∇u(., T0)∥2L2 .
From (3.19), H3 estimate for this case is same as that for the first case.
The proof is complete.
When r = 1 in (1.3), We need the following lemma:

Lemma 3.1. If f ∈ H1(R3) and ∇f ∈
.

M2,3(R3), then

f ∈ BMO(R3).

Proof. By the classical Poincaré inequality, we have∫
B(x,R)

∣∣f(y)− fB(x,R)

∣∣2 dy ≤ C R2

∫
B(x,R)

|∇f(y)|2 dy

≤ C R3 ∥∇f∥2.M2,3

for every ball B(x,R) of any radius R and there holds

∥f∥2BMO = sup
x∈R3

sup
R>0

1

|B(x,R)|

∫
B(x,R)

∣∣f(y)− fB(x,R)f(y)
∣∣2 dy

≤ C ∥∇f∥2.M2,3
. □
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Since ∇ · w = 0, it follows from Coifman-Lions-Meyer-Semmes [1] (see also
[4]) that

w · ∇w ∈ H1 with ∥w · ∇w∥H1 ≤ C ∥∇w∥L2 ∥w∥L2 ,

where H1 denotes the Hardy space on R3. Since
(
H1

)∗
= BMO, (3.5) reads

|I + II + III + IV |
≤ C∥u∥BMO∥∇u∥L2∥∆u∥L2 + C∥u∥BMO∥∇b∥L2∥∆b∥L2

≤ C∥u∥ .
M2,3

∥∇u∥L2∥∆u∥L2 + C∥u∥ .
M2,3

∥∇b∥L2∥∆b∥L2

≤ C∥∇u∥2.
M2,3

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+

1

2

(
∥∆u∥2L2 + ∥∆b∥2L2

)
.

Then (3.8) reduces to

d

dt

(
∥∇u∥2L2 + ∥∇b∥2L2

)
+ ∥∆u∥2L2 + ∥∆b∥2L2

≤ C
∥u∥2.

M2,3

1 + ln (e+ ∥u∥L∞)

(
∥∇u∥2L2 + ∥∇b∥2L2

)
(1 + ln(e+ y(t))).

The remaining estimate is analogous to that for r < 1.
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