DOI QR코드

DOI QR Code

Electrodeposition and Characterization of p-type SbxTey Thermoelectric Thin Films

전착법에 의한 p-형 SbxTey 박막 형성 및 열전특성 평가

  • 박미영 (한국기계연구원부설 재료연구소) ;
  • 임재홍 (한국기계연구원부설 재료연구소) ;
  • 임동찬 (한국기계연구원부설 재료연구소) ;
  • 이규환 (한국기계연구원부설 재료연구소)
  • Received : 2011.02.08
  • Accepted : 2011.03.03
  • Published : 2011.04.27

Abstract

The electro-deposition of compound semiconductors has been attracting more attention because of its ability to rapidly deposit nanostructured materials and thin films with controlled morphology, dimensions, and crystallinity in a costeffective manner (1). In particular, low band-gap $A_2B_3$-type chalcogenides, such as $Sb_2Te_3$ and $Bi_2Te_3$, have been extensively studied because of their potential applications in thermoelectric power generator and cooler and phase change memory. Thermoelectric $Sb_xTe_y$ films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different ratios of $TeO_2$ to $Sb_2O_3$. The stoichiometric $Sb_xTe_y$ films were obtained at an applied voltage of -0.15V vs. SCE using a solution consisting of 2.4 mM $TeO_2$, 0.8 mM $Sb_2O_3$, 33 mM tartaric acid, and 1M $HNO_3$. The stoichiometric $Sb_xTe_y$ films had the rhombohedral structure with a preferred orientation along the [015] direction. The films featured hole concentration and mobility of $5.8{\times}10^{18}/cm^3$ and $54.8\;cm^2/V{\cdot}s$, respectively. More negative applied potential yielded more Sb content in the deposited $Sb_xTe_y$ films. In addition, the hole concentration and mobility decreased with more negative deposition potential and finally showed insulating property, possibly due to more defect formation. The Seebeck coefficient of as-deposited $Sb_2Te_3$ thin film deposited at -0.15V vs. SCE at room temperature was approximately 118 ${\mu}V/K$ at room temperature, which is similar to bulk counterparts.

Keywords

References

  1. K. Park, F. Xiao, B. Y. Yoo, Y. Rheem and N. V. Myung, J. Alloy. Comp, 485(1-2), 362 (2009). https://doi.org/10.1016/j.jallcom.2009.05.106
  2. D. Del Frari, S. Diliberto, N. Stein, C. Boulanger and J.- M. Lecuire, Thin Solid Films, 483(1-2), 44 (2005). https://doi.org/10.1016/j.tsf.2004.12.015
  3. B. Y. Yoo, C. K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J. P. Fleurial and N. V. Myung, Electrochim. Acta, 50(22), 4371 (2005). https://doi.org/10.1016/j.electacta.2005.02.016
  4. I. Y. Erdogan and U. Demir, J. Electroanal. Chem., 633(1), 253 (2009). https://doi.org/10.1016/j.jelechem.2009.06.010
  5. G. Leimkuhler, I. Kerkamm and R. Reineke-Koch, J. Electrochem. Soc., 149(10), C474 (2002). https://doi.org/10.1149/1.1503811
  6. J. Yang, W. Zhu, X. Gao, S. Bao, X. Fan, X. Duan and J. Hou, J. Phys. Chem. B, 110(10), 4599 (2006). https://doi.org/10.1021/jp0565498
  7. C. Wang, Q. Wang, L. Chen, X. Xu and Q. Yao, Electrochem. Solid State Lett., 9(9), C147 (2006). https://doi.org/10.1149/1.2211884
  8. Q. Huang, A. J. Kellock and S. Raoux, J. Electrochem. Soc., 155(2), D104 (2008). https://doi.org/10.1149/1.2806169
  9. M. P. R. Panicker, M. Knaster and F. A. Kroger, J. Electrochem. Soc., 125(4), 566 (1978). https://doi.org/10.1149/1.2131499
  10. H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng, C. H. A. Huan and J. Lin, J. Phys. Chem. B, 109(8), 3094 (2005). https://doi.org/10.1021/jp0451997
  11. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik and N. El-Masry, J. Cryst. Growth, 170(1-4), 817 (1997). https://doi.org/10.1016/S0022-0248(96)00656-2