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Abstract. This paper deals with the reliability analysis of a complex system with
three possibilities at the time of repair. The considered system consists of two
subsystems A and Bin series configuration (1-out-of-2: F). Subsystem A has # units
which are connected in series whereas subsystem B consists of # units in parallel
configuration. The configuration of subsystem A is of 1-out-of-n: F whereas
subsystem B is of k-out-of-n: D and k+1-out-of-n: F nature. System has three states:
Good, degraded and failed. Supplementary variable technique has been used for
mathematical formulation of the model. Laplace transform is being utilized to solve
the mathematical equation. Reliability, Availability, M.T.T.F., Busy Period and Cost
effectiveness of the system have been computed. The repairs from state S; to Sy, Sgto
So, So to Sy and S;; to Sy have two types namely exponential and general. Joint
probability distribution of repair rate from S; to So, Sg to Sy, Sy to S and S; to Sy is
computed by Gumbel-Hougaard family of copula. Some particular cases of the
system have also been derived to see the practical importance of the model.

Key Words: Reliability, availability, M.T.T.F., busy period, sensitivity analysis, cost
analysis, supplementary variable technique, Gumbel-Hougaard copula

1. INTRODUCTION
The study of repairable systems is an important topic in reliability. Repairman is one

of the essential parts of repairable systems, and can affect the economic benefit of the
systems, directly or indirectly. The work forms of repairman may affect the performance
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of the system. Therefore, he plays an important role on improving the reliability of the
repairable systems. Khaled M. El-Said (2010) analyzed the cost—benefit analysis of a two-
unit cold standby system with two-stage repair of failed unit. The repair process is divided
into two stages. In the first stage, the repairing process of the unit is started but it does not
get completed; instead the process is completed in the second stage. A. M. Rashad, M.
Salah EL-Sherbeny and Z. M. Hussien (2009) considered two-unit cold standby system
with two types of repair-minor (regular) and major (expert). The first repairman (minor)
will remain with the repair facility assuming that he might not be able to do some complex
repair within some tolerable time. The second repairman (major) is called to the system if
and only if the (minor) repairman is unable to do the job within time or when the two units
are failed, whichever occurs first. DequanYue, Wuyi Yue and Hongjuan Qi (2008) studied
a machine repairable system with spares and two repairmen. The first repairman never
takes vacations and always available for serving the failed units. The second repairman
leaves for a vacation under some conditions. Linmin Hu and Jiandong (2009) analyzed
reliability characteristics of a three-dissimilar unit repairable system with one repairman,
with assumption that the repairman leaves for a vacation if there are no failed units
waiting for repair in the system. When he comes from the vacation and find the failed
units, he starts to repair the failed units and if there are no failed units then he goes for
another vacation. Mangey Ram and S. B. Singh (2008) studied the complex system
considered consists of two independent repairable subsystems A and B in series. The
system is analyzed under preemptive-resume repair policy. Subsystem A is assumed to be
priority unit while subsystem is non-priority unit. Here, whenever subsystem B is under
repair and at the same time subsystem A fails, the repairing of subsystem B is stopped and
subsystem A is taken for the repair. The repair of subsystem B is started from the point
where it was left earlier as soon as repair of A is completed. Rakesh Gupta, C. K. Goel
and ArchanaTomer (2010) considered two non-identical unit standby system model with
single repair facility which appears and disappears from the system randomly assuming
that when the repairman starts the repair of a failed unit, he does not leave the system till
all the units are repaired that has failed during his service. S. K. Singh (1989) considered
two-unit cold standby system with the assumption that the service facility appears and
disappears from the system randomly. S. M. Rizwan, H. Chauhan and G. Taneja (2005)
examined one unit and two unit systems with the concept of accident during inspection
and possibility of multiple post repair inspection with the assumption that accident takes
place during inspection of repaired unit and the harms the repairman in such a way that he
is not capable to do the job. Then another repairman is called to repair the failed unit.
There may be many situations in practical life such as: (i) The repair cost of failed unit is
much greater than the cost of new unit. In such condition the failed unit should be replace
by new unit (ii) The repairman disappears at the time of repair of failed unit. In this case
the system stops working till the repairman comes and repairs the failed unit (iii)
Sometimes when a repairman is busy in repair of failed unit, an accident takes place
during repair. The repairman is injured in accident and cannot do his job further.

Keeping the above facts in mind, the aim of this paper is to analyze the reliability of a
complex system including all three possibilities at the time of repair of failed unit which
have not been considered simultaneously by earlier researchers. The considered system
consists of two subsystems A and B in series configuration (1-out-of-2: F). Subsystem A



B. Nailwal and S. B. Singh 17

has 7 units, connected in series whereas subsystem B consists of # units in parallel. The
configuration of subsystem A is of 1-out-of-n: F whereas subsystem B is of k-out-of-n: D
and k+1-out-of-n: F nature. System has three states: Good, degraded and failed. Here,
following three possibilities have been considered for the failure of subsystem: (i) If the
repairman is available when a subsystem fails then he repairs the failed subsystem and if
the repairman disappears from the system at the time of repair of failed subsystem. Then
system starts working when a repairman comes and repairs the failed subsystem. (ii)
When the repairman is busy in the repair of failed subsystem, an accident takes place
during the repair. The repairman is injured and does not capable to continue the job, in this
situation the new repairman is called to do the job. The new repairman repairs the failed
subsystem afresh with more care and attention. (iii) If the subsystem is taken maximum
time for repair then it should be replaced by new unit. The repair times follow exponential
and general time distributions respectively. At states S, Sg, Sg and S; both the subsystems
are completely failed and being repaired with two different repair rates. The repairs from
state S; to Sy, Sg to Sy, Sgto Sp and S;; to Sy have two types namely exponential and
general. Joint probability distribution of repair rate from S; to Sy, Sg to Sy, So to Sp and Sy,
to Sy is computed by Gumbel-Hougaard family of copula (2006). The system is studied by
using the supplementary variable technique, Laplace transformation and Gumbel-
Hougaard family of copula to obtain reliability, availability, M.T.T.F., busy period,
sensitivity analysis and cost effectiveness of the system. At last some numerical examples
have been taken to discuss the particular cases.

2. ASSUMPTIONS

1) Initially the system is in perfectly good state i.e. all the units are functioning perfectly.

2) Att=0 all the components are perfect and ¢ > 0 they start operating.

3) The system consists of two subsystem A and B are connected in series (1-out-of-2: F).
Subsystem A has » units are connected in series whereas subsystem B consists of 7
units in parallel configuration.

4) The configuration of subsystem A is of 1-out-of-n: F whereas subsystem B is of k-out-
of-n: D and k+1-out-of-n: F nature.

5) System has three states: Good, degraded and failed.

6) When a subsystem fails, we consider three possibilities.

(a) If the repairman is available with the system when the subsystem has failed. Then
he repairs the subsystem and if he disappears from the system at the time of repair
of failed subsystem. Then the system will start when he comes after a particular
amount of time and repairs the failed subsystem.

(b) Repairman may meet with an accident when he is busy in repair of the failed
subsystem in a way that he is not capable to repair the failed subsystem. Then new
repairman is called to do the job. We assumed that the new repairman repaired the
failed subsystem with more carefully so that no further accident occurs.

(c) If the repairman does not repair the failed subsystem within maximum repair time
then he replaced failed subsystem by new one.
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7) The repaired subsystem is as good as new and is immediately reconnected to the
system.

8) Transition from the completely failed state S; to the initial state S,, completely failed
state Sg to the initial state Sy, completely failed state Sy to initial state Sy, completely
failed states S;; to initial state S, follows two different distributions.

9) Joint probability distribution of repair rate from S; to S, Sg to Sy, So to Sp and Sy to Sy
is computed by Gumbel-Hougaard family of copula.

3. STATE SPECIFICATION
G: Good state, D: Degraded state, F,: Failed unit under repair, F: Failed unit

Table 3.1. State specification

Subsystems
States System state
A B
So G G G
S F, G F,
S, F G F
S; F, G F,
S, F, G F,
Ss F, G F,
S¢ G D D
S, F, F, F,
Sg F, F, F,
Se F, F, F.
Sio F F F
Si F; F; F,
Si2 G F, F,
Si; G F, F;
Sia G F, F.
Sis G F F
Si6 G F, F,
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4. BLOCK AND STATE TRANSITION DIAGRAM
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Figure 4.1. Block and state transition diagram

5. NOTATIONS

A : Constant failure rate of subsystem A

K n
a, &, : Constant failure rates of subsystem B. Where a, = Zai and a, = Za ;
i=1 j=K+1

P (1) : Probability that the system is in S; state at instant t for [ = 1 to 16.
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E(S) :Laplace transform of P, ()
V4 : Accident rate

0 : Maximum repair time
u, (x) : Repair rate of subsystem A

u, (x) : Repair rate of subsystem B

@, () : Repair rate of subsystem A after an accident takes place

@, (v) : Repair rate of subsystem B after an accident takes place

v,(z) : Replacement rate of subsystem A

v, (z) : Replacement rate of subsystem B

E ,(?) : Expected profit during the interval (0, 7].

K, K, : Revenue per unit time and service cost per unit time respectively

@(x) : Coupled repair rate

F.(x)/F : Marginal distribution of random variables, where F (x)=e" and

F=u,(x),$,(x),v,(x)

Letting F (x)=e€" and F =u,(x),$,(x),v,(x) , the expression for joint probability

(failed state S; to good state Sy, failed state Sg to good state Sy, failed state So to good state
Sy and failed state S;; to initial state Sy) according to Gumbel-Hougaard family of copula
is given by

u(x) = explx’ +log@u, (x)) 7. §(3) = exp|y? +log(, (1)’
W(z) = explz” +log(v, (2))’

6. FORMULATION OF MATHEMATICAL MODEL

By probability consideration and continuity arguments the following difference-
differential equations governing the behavior of the system seems to be good.

(;’t A +aljfz<t> - I%(x)Ps(x,z)dx+Iu1(x>Pl<x,r)dx+Ivl(zm(z,ndwz@(y)
R dy+ [ 60D R 00 dy+ [ 1 (2) Ry() e+ [ B zat)
[#0) R0+ [uo) B Gty + [, () By (o) + [ ()

P (x,)dx + T u,(x) P, (x,t)dx + ]?u(x)P7 (x,t)dx

(6.1)
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0 0
(5+5+X+7/+0+u1(x))1’1(x,t)=0

(6.2)
)
—+Y |B()=0
(dt (6.3)
o 0
—+—+¢1(y)ng(y,t)=0
(az oy (6.4)
(g + 82 +v (z)jP4 (z,t)=0
zZ

(6.5)
(3+3+u1(x)j1’5(x,z>=0
ot ox (6.6)
0 0
(5+§+u2(x)+/1+a2j1’6(x,t)=0

(6.7)
0 0
(5+a+u(x)+7+)(+6jl’7(x,t)=0 65)
0 0
(5 + > + ¢(y)]Ps (»,0)=0

(6.9)
0 0
—+—+ v(z))P (z,t)=0
(az oz ’ (6.10)
d
—+Y |Ro(t) = XP,(2)
[dt j (6.11)
0o 0
—+—+M(X)an(x,t)=0
(az ox (6.12)
(a 0 )
—+—+X+0+y+uy(x) [By(x,1)=0
: o (6.13)
o 0
—+—+¢2(Y)jpl3(yaf):0
(& Y (6.14)
0 0 _
(54‘5‘*“’2(2)][)14(291)—0 (6.15)
[% v Y]Pls ()= XPs (1

(6.16)

o 0
(E+a+u2(X)jP16(x,t)_O (6.17)
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Boundary conditions:

R(0,0)=y Ry (1)

(6.18)
B0, =y R(®) (6.19)
Fy(0,0)=0R(1) (6.20)
RO.)=YPy(0) (621)
RO = A() (6:22)
P0.0)=2R) (6.23)
RO.0)=y P () (6.24)
B (0,0)=0P (1) (6.25)
Bi(0,0)=Y By(1) (6.26)
Ry (0,0) =, F(1) (6.27)
B;3(0,0)=y R, (2) (6.28)
P,(0,6)=0PR,(t) (6.29)
B¢(0,0)=Y Bs(?) (6.30)

Initial condition:
P, (0) =1, and other state probabilities are zero at t=0.

7. SOLUTION OF THE MODEL

Taking Laplace transformation of (6.1) to (6.30) and on further simplification, one may
obtain:

- 1
PO(S)—TS)
(7.1)
;l(s):ﬂ{l—sul(ﬁxwwq 1 7.2)
(s+X+y+0) A(s)
o) =X 1{1—§u1(s+X+}/+6’):| 1
(s+Y) (s+X+y+0) A(s)

(7.3)
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Fa(S)=7/’{1_§”'(S+X+7+9)]1—§¢1(S)} 1
+X+y+60) s A(s)
y}—)4(s):9/{1—@1(s+X+y+9)[l—§v1(s):| 1
(s+X+y+6) s A(s)
o)=Y /{I—Sul(s+X+y+9)}{1—Sul(s)} !
(s+Y) | (s+X+y+0) s | AGs)
]_36(S):0!1|:1_S”2(S+/1+a2):| 1
(s+A+ay) A(s)
1—)7(S):/1a1{1—5,42(s+/1+a2)]1—§u(s+7+X+«9):| 1
(s+A+ay) (s+7+X+6) A(s)
Fs(s):7/2,0(1|:1_§“2(5+/1+a2)_|:1—§u(5+)/+X+9)}|:1—§¢(S):| 1
(s+A+ay (s+y+X+6) s A(s)
pg(s)=eml{I‘S“z(”“%)HI—&(H7+X+9)H1—sv(s)} 1
(s+A+a,) (s+7y+X+0) s A(s)

1—§u2(S+l+O.’2)_

1

1_’10(5) = G fy) Aoy {

_1—§u(s+y+X+0)}

(s+A+az) (s+y+X+0) |A(s)
()= Y M{l—Suz(s+/1+az)"l—Su(s+y+X+9)H1—Su(s)} |
(s+7Y) (s+1+ay) (s+y+X+6) s A(s)

Pi(s)=a; a{ st itan

1—§u2(s+/1+a2):l{1—§u2(s+X+9+7)} 1

(s+X+60+y) A(s)

1_313(8) =ya, [

1—§uz(S+/1+052):|{1—§u2(5+X+6+;/)

}{1—5,,& (s):l 1
(s) | A(s)

(s+A+ay) (s+X+60+y)
1—314(S)=9a2a1{I—Suz(s+l+a2)}{l—Su2(s+X+49+;/)}{1—SV2(s)} 1
(s+A+ay) (s+X+0+y) s A(s)

23

(7.4)

(7.5)

(7.6)

(1.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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Prs(s)=— azal{I‘E"*S”*az)}{l—@z<s+X+0+y)} I
(s+7Y) (s+A+ay)

(s+X+60+y) A(s)
(7.16)
Pis(s) = Xr azal|:1_Su2(S+/1+a2):||:l_su2(S+X+0+}/):H:1—Su2(6‘):| 1
(s+7Y) (s+A+ay) (s+X+6+y) s A(s)
(7.17)
where
As)=(s+A+ay)— L4 1= Suls+X+7+) g S ()= A8 (5+ X +0+7)—
(s+Y) (s+X+y+60
1- Su1 s+X+y+ 1 Su1 s+X+y+
0 ( r+0) < S, ()7 ( 7+ 15 S4(9)-rya
(s+X+y+0) (s+X+7+0)
1-S,, (s+A+ 1-S,, (s+ X +6+
o ( %) Iy ( 7) Sy (5)—0a,
(s+A+w) (S+X+6+y)
1__ u
Suz(s+/1+az) 11— —Su, (s+X+60+7) |- 5.(5)-02a;
(+A+a) | (+X+0+y)
[1-S,, (s+A+0) | 1-Su(s+y+X+0) |-
| G+ A+e) | (X0
_l—guz(s+/”t+az)__1—§u(s+;/+X+9) ) Y
| (tAta) | X0 S~
_1—:9%(s+/1+a2)__1—3*u(s+7+X+67) 5.(6)
| G+ A+e) | (X0 ! (+Y)
3
Su(s+740;) [ 1S 6+ X464 5 S (5) =04 Sy (s-+ A+
| G+ A+a) | (+X+O0+)
B 1- S%(s+/1+0(2) S, (s X+647)— 1 l—Suz(s+/1+0(2)
(s+A+a) (s+A+a)
(7.18)

Eu(s+y+X+@
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It is worth nothing that
Po(s)+ Pi(s)+ Pa(s) + P3(s) + Pa(s) + Ps(s) + Ps(s) + P7(s) + Ps(s) + Po(s) + Pro(s) +

Pii(s)+ Pra(s) + P13(s) + Pra(s) + Pis(s) + Prs(s) =§
(7.19)

8. EVALUATION OF LAPLACE TRANSFORMATION OF UP AND DOWN
STATE PROBABILITIES

The Laplace Transformation of the probabilities that the system is in operable and
down state at time ‘¢’ can be evaluated as follows.
Pup(s) = Po(s)+ Ps(s)
. {I—Suz(s+/7.+a2)} 1
A(s) (s+1+a,) A(s) (8.1)

Paiown(s) = Pi(s) + P2(5) + P3(s) + P () + Ps(s) + P1(s) + Ps(s) + Po(s) + Pro(s) +
Pii(s)+ Pia(s) + Pr3(s) + Pra(s) + Prs(s) + Pro(s)
Z;{I—EM(S+X+7/+6’)} 1 N X ;{l—gul(s+)(+7/+6b} 1

s+X+y+6) A(s) (s+Y) (s+X+y+6) A(s)
; 1-Su s+ X+7+60) || 1-S4(s) | 1 ) 1-Su (s+ X +7+6)
S+X+y+60) s A(s) S+X+y+60)
l—gvl(s) L+9/1 l—gul(s+X+7/+6’) l—gvl(s) 1 N XY
s A(s) (s+X+y+60) s A@s) (s+Y)
l{1-§ul(s+x+y+9)}{1—§ul(s)} 1 +/1a{1—§uz(s+ﬁ+a2)}
+X+y+60) s A(s) (s+A+a,)

1-S.(s+y+X+6)| 1 e 1-Su(s+A+a,) [ 1-Su(s+7+ X +6) |
(s+7+X+0) |A(s) N G+i+ay, (s+y7+X+06)

1-S4(s) RIS 1=Su (s+A+0) [ 1=Su(s + 7+ X +6) [ 1=Su(s) |
s A(s) 1 (s+A+a,) (s+y+X+6) s
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X 1-Si, (s+A+a) | 1-Su(s+y+X+0) | 1 XY
As) (s+Y)

(s+A+a) (+7+X+0) |A5s) (s+Y)
. {1—31,2 (s+/1+a2)}{1—§u(s+;/+X+H):H:1—§u(s)_ e
(s+A+ax) S+y+X+6) s A(s)

{1 Suz(s+/1+a2)} 1—§u2(s+X+6’+)/):| e _1—§¢Z(s)}
(s+A+ay) (s+X+6+y) A(s) | ()

{1—Su2(s+/1+a2)]1—§u2(S+X+6’+)/):| H—Evl(s)}
+0o, | ————
(s+A+a) (s+X+6+y) A(s) | s

1=Su, (s+A+a) [ 1=Su, s+ X +0+7) | 1
(s+A+) (s+X+6+y) A(s) (s+Y)

1=Su, (s+A+a) [ 1=8u, s+ X +0+7) | 1
(s+A+a) (s+X+6+y) As) (s+Y)

1=-Su, (s+A+a) || 1=Su, (s+ X +60+7) 1Su2(s)
(s+A+x) (s+X+6+y)

(8.2)

9. ASYMPTOTIC BEHAVIOR OF THE SYSTEM
Using Abel’s lemma in Laplace transformation viz.
Lirg {SF(S)}= Lim F(t) = F(say)
s> t—00

provided that the limit on right hand exists in (8.1) and (8.2), the time independent up and
down state probabilities are obtained as follows:

el
P,=——+q
7 A0) (A+a, +u,) | A0)

(9.1)

Pdown:ﬂ’|: 1 :| 1 + X |: ! :| ! +y4
(X+y+60+u)|A0) (s+Y) |(X+y+60+u;)|A0)

s e cmm] ey
+0A
(X+y+0+u) || s+¢ | A0) (X+y+0+u) || s+v,

1 { 1 M 1 } 1 Xy { ) }
+0A + A
A(0) X +y+0+u) || s+v, [40) (s+Y) | (X+y+6+u))

e roR ) el r
—+la, +ria,
(s+u, | A0) A+a,+u,) || (y+X+60+u) | A0)
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1
s+¢

1

|

(/1+0¢2 +u2)}{( +X+9+u)}{

+0A
A(0)

27

1
A+a,+u,)

|

1

|

Aa,
7/+X+0+u) s+v A(O) (s+Y)

A+a,+u,)

|

1

y+X+0+u)}A(O) (s+Y)

{ 1

1

A+a,+u,)

|

}{(7+X+«9+u)

el )

1 1

(X+6+y+u,)

| s+u m A+a,+u,)
1
_(S+¢z)

ool

(X+6+y+u,) | A0)

tra,q

} A(0)

+0a,, {

|
} 1 X

+
A(0) (s+Y)

1
_()p+oz2 +u2)}{(){+6’+y+u2)
1

26!1

|

A+a,+u,)

2

{ 1
a, a,

1 N XY
| (X +0+y+u,) |A0) (s+7Y) A+a,+
F }

| s +u,

e

u,) || (X +0+y+u,)

9.2)

10. PARTICULAR CASE

(1) When repair follows exponential distribution

In this case the result can be derived by putting

u (x)
S+ X+y+0+u(x)
uy (x)
S+ X +0+y+uy(x)
u(x)
s+u(x)’ ()_
uy (x)
s+uy(x)’

Eul(s+X+y+6)=

§u2(s+X+¢9+y)= ,§,,(s+7+X+

#1(x)
s+ ¢ (x) ’

< _ w5 _
Sul (S)_ s+u1(x) Suz(s)_

in equations (7.1)-(7.18) , we get

Po(s) =$

v(x)

5 +v(x)
vy (x)

s+v(x)

Sg(s)= Su(s) =

Sy (s)=

,Euz(s+l+a2)—

§¢z (s

Sy(s)=

up (x)

S+ A+ay +uy(x)
u(x)
s+y+X+60+u(x)

$2(x)

s+ ¢ (x)
P(x)

s+ @(x)

0) =

)=

(10.1)

(10.2)
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Fmg:z{
s+ X+y+0+u(x))

Pa(s)= !

! }ﬁu@

X /{ }Fo(s)
(s+Y) |(s+X+y+0+u(x)

_ 1 I |z

PS(S)_M{(s+X+7/+9+u1(x))}L+¢l(xJPO(S)

,}_’4(s)=9/1[ ! }[ 1 }T’O(S)
S+X+y+0+u (%) || s+v(x)

— Xy ! L

Pa)= (s+Y)/{(HX+y+9+u1(x))}L+”1(x)}PO(S)

_ 1 -

Pé(s):a{(ﬁﬂjtaz +u2(x))}P0(s)

_ 1 1 P

Pas) =/1a{(s+/l+a2 +uz(x))}[(s+7+X+0+u(x))}PO(S)

Fols) =y A 1 1 ! Po(s)
[ At ey +un () G547+ X +0+u(@) || s +4() |

o) =0 1 1 ! Po(s)
L(s+A+as +uy(x) L (s +7+ X +0+u(x)) || s +v(x) |

_ X i 1 I ! Iz

Pr= (s+Y)/ml s+ A+ +uz(x))__(S+7/+X+9+”(x))_PO(S)

]_Dll(s): XY A 1 1 { }I_DO(S)

(s+Y) L (s+A+ay +uy(x) J| (s+7+ X +0+u(x)) || s+u(x)
_ 1 1 P
Pe@=a a{(swhaz +uz(x))}[(s+X+9+7+”2(x))}PO(S)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)
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— I 1 i 1 1T 1 1=
P”(s)_mzal_(s+,1+a2+u2(x))__(s+X+9+y+u2(x))__s+¢2(x)_P°(S)

] N N (10.15)
— 1 1 1 =
P = bt () | Gr X 01710 | stmm |
(10.16)
Pis(s)= S+Y)a2al_(s+/1+a2+u2(x))}{(s+X+0+7+u2(x))}P0(s)
(10.17)
Y 1 1 1 1=
te(8)=7 +Y)a2a1_(s+/1+a2+u2(x))}[(s+X+¢9+}/+u2(x))}L+u2(x)}PO(S)
(10.18)
where
As)=(s+ A+ag)—— L /1{ ! } h) t4(x) -
(s+Y) | (s+X+y+0+u(x) |s+u(x) s+X+0+y+u(x)
a 1 vi(x) _ 1 $(x) _
+X+y+0+u(x) [s+v(x) +X+y+0+u,(x) |s+4(x)
—ra, 0{1|: ! }|: ! } ¢2(X) _‘90‘2 a
S+A+a+u,(x) || (s+ X +0+y+u,(x)) |5+ (x)

[ 1 [ 1 } V,(x) —0a,
(s+A+a +uy(x)) || (s + X +0+y +uy(x)) |s+1,(x)
{ 1 } 1 } W(x)

-yl
(s+A+a, +u,(x)) || (s+y+X+0+u(x)) |s+v(x)

Hx) XY

1 1
Ls+/1+a2 +u2(x))}_(s+}/+X+t9+u(x))}s+¢(x) (s+Y)

u(x)

Ao { !
s+ A+, +u,(x))

XY

1

I

1
(s+7/+X+6’+u(x))L+u(x)

u,(x) _

U, (x)

8 +1,(x)

1 (X)

!
o> O‘l[(ﬁm% +u2(x))}[(s+X+¢9+]/+u2(x))}

1
1 —0h o
S+ A+a, +u,(x) s+A+a, +u,(x))

s+X+¢9+;/+u2(x)_

u(x)
s+y+X+0+u(x)

“ ! }
(s+A+a, +u,(x))



30 Performance evaluation and reliability analysis of a complex system

(2) When accident do not take place when the failed unit is repaired by the repairman.
In this case the result can be derived by putting y=0 in equations (7.1-18), Laplace

transformation of various state probabilities are as follows:

- 1
PO(S):E
< (10.19)
FI(S)Z/I|:1_SW(S+X+0):| 1
(s+X+6) A(s)
< (10.20)
Pa(s) = X E[I_SMI(SJFXJF@)} 1
(s+7) (s+X+6) |A(®s)
P (10.21)
P;i(s)=0
(10.22)
7’4(S)=«9/1{1_&"(S+X+0)}{1_SV1(S):| 1
(s+X+0) s A(s)
< _ (10.23)
Pos)= X /{I—Sul(S+X+9)M1—Sul(s)} 1
(s+7Y) (s+X+6) s A(s)
S (10.24)
Ps(S)Zal{l_Sl¢Z(S+/1+a2):| 1
(s+A+a,) A(s)
_ _ (10.25)
1_)7(3)2/10[]{I_Suz(S+/1+052)}{1—Su(s+)(+(9):| 1
(s+i+a,) (s+X+0) |A(s)
P (10.26)
Ps(s)=0
(10.27)
Pg(s)zelal{I—Suz(s+/1+a2)}{l—Su(s+X+9)M1—SV(S)} 1
(s+A+a,) (s+X+06) s A(s)
(10.28)

Pro(s) = X /‘Lal{I_S"Z(S+/1+a2)}{l_s“(s+)(+9)} 1
(s+Y) (s+A+a,) (s+X+60) |A(s)

(10.29)
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Pui(s) = XY l{I—Suz(s+/1+a2)M1—Su(s+X+9)}{1—Su(s)} 1

(s+Y) a (s+A+a,) (s+X+6) s A(s)
_ _ (10.30)
Plz(s):aza1|:1—S,,Z(S+/1+a2)}|:1—SuZ(S+X+6)} 1
(s+i+a,) (s+X+60) |A(s)
(10.31)
Pi3(s)=0
_ _ - (10.32)
PM(S):eazal|:1—Suz(s+/1+0{2)}{1—Su7(s+X+€)M1—sz(s)} 1
(s+i+a,) (s+X+6) s A(s)
] (10.33)
o) =X a2a1|:l—Suz(s+i+0{2):| l—SuZ(s+X+6)} 1
(s+7Y) (s+A+a,) (s+X+0) |A(s)
_ o ~ (10.34)
Pis(s) =2 azal{l_S"Z(H/Haz) |:1_S“Z(S+X+9):||:1_Su2(s):| 1
(s+7Y) (s+A+a,) (s+X+6) s A(s)
(10.35)

where

A)=(s+A+0a))—

XY ;L|:1_SMI(S+X+9)j|§ﬂ1(s)_;tgul(s—i_X—i_H)_

(s+Y) (s+X+60)
” 1-S, (s+ X +6) 5. (5)-6a, a 1-S., (s+A+a,)
(s+X+6) ! P (s+A+ay)
1-S., (s+ X +6) 5. (5)_0a 1-S., (s+A+a,)
(s+X+06) B N s+ dl+a)
1-Su(s+ X +6) 5.(5) Xy 1-Su, (s+ A+a,)
(s+X+0) T (s+A+ay)
1-S.(s+ X +6) 5. (s) xy 1-S., (s+A+a,)
(s+ X +0) T s+ P (s+A+ay)

{I—EVZ(S+X+6’)

guZ(S)_al§u2(s+ﬂ’+a2)_aza1 I_SuZ(S—i—/l—}_az)
(s+X+0)

(s+A+a,)

l—guz(s+/”t+a2)
(s+A+a,)

§“2(3+X+9)—/10{ }§u(s+X+t9)

(10.36)
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11. NUMERICAL COMPUTATION
(1) Reliability analysis
Assuming that the equation (10.1) holds then the reliability of the system is given by

— 1 a
R(s) = +
s+tA+a, (s+A+a,)(s+A+a)) (11.1)

Taking inverse Laplace Transformation, we have

-a, e(—(/“al)f) +a, e(—(/“az)l)

R(r)=
Tt (11.2)
For numerical illustration, let us consider the values A =0.1, a;= 0.2, 0,=0.3 and t=0, 1,
2, 3, .... Using these values in equation (11.2), we compute the Table 11.1 and

corresponding graph has been shown in Figure 11.1.

(2) Availability analysis

Assuming the parameters A = 0.1, 0, = 0.2, ;= 0.3,y=04,0=0.5, X =0.6, Y =
0.08, repair rates P =P, =P,=u=wy=wp=v=v;=v, = l,and x =y =z = 1, and letting
that equation (10.1) holds. Putting all these values in equation (8.1) and taking inverse
Laplace transformation, we get

P =0.002330353689 exp(~2.505671778 ) — 0.0655477237 exp(—1.526615558 1) + 0.1

up
436820545 exp(—1.133297414 £) + 0.2743740253 exp(=0.1144152498 1) + 0.6451
612903 (11.3)
Now in equation (11.3) setting t = 0,1,2,3,4,5,6,7,8,9,10, one can obtain Table 11.2. The
same is shown in Figure 11.2 which shows the variation of availability with respect to
time.

(3) MLT.T.F. analysis
Letting the equation (10.1) holds then the mean time to failure (M.T.T.F.) of the
system is given by
MT.T.F.=LimR(s)

At o,+a
(/1+a2)(/1+a1) (114)

1) Taking the values o, = 0.2, a,= 0.3, and A = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.10, one can obtain Tablel1.3 which shows how M.T.T.F. changes with
respect to A.

2) Varying o, as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, and keeping
other parameter fixed at A = 0.1, a, = 0.3, one can get the change of M.T.T.F. with
respect to o, as given in Tablel1.4.

3) Assuming A = 0.1, o; = 0.2, and a, as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.10. The variation of M.T.T.F. with respect to a, is obtained which is given in
Tablell.5.
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(4) Busy period analysis
Let the equation (10.1) holds then Mean time to repair (M.T.T.R.) of the system is
given by

M.T.T.R. == le ;)down (S)
s—0

Letting® =®;=Oy,=u=uy=wp=v=vi=v,=1,x=y=z=1,0,=0.2, 1,= 0.3, y = 0.4,
0=0.5 X=0.6, Y =0.08 and varying A as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.10, one can obtain Table 11.6. This is shown in Figure 11.6 which demonstrates
how busy period changes with respect to A.

(5) Sensitivity analysis

Assuming that the equation (10.1) holds. We first perform a sensitivity analysis for
changes in R(t) resulting from changes in system parameters A, o, and o,. Differentiating
equation (11.1) with respect to A, we get

OR(s) 1 a, a,

oA (s+A+a)’ (+A+a,) (s+i+a) (s+A+a,)(s+A+a,)’
Taking inverse Laplace transform, we obtain
OR(t) _te Vg, —te H)ig

oA -a, +0,

Using the same procedure described above, we can get R (1) qpnd OR (1) |
oa, oa,
Then we perform a sensitivity analysis of changes in M.T.T.F. with respect to A, a;, and a,.
Differentiating equation (11.4) with respect to A, we obtain
OMTTF 1 At+a,+a)  (A+a,+a)

oA _(ﬂ,+a2)(/1+al) A+a,) (A+a) (A+a,)(A+a,)’

OMTTF and OMTTF

oa, oa,
the sensitivity analysis for the system reliability and the MTTF are presented in
Figures11.7, 8,9, 10, 11 and 12.

Using the same procedure, can be obtained. Numerical results of

(6) Cost analysis

Assuming @ =0 =D,=u=u=wp=v=v;=v,=1,x=y=z=1,A=0.1,0,=0.2,
a=0.3,y=0.4,0=0.5 X=0.6, Y =0.08. Furthermore if the repair follows exponential
distribution (i.e. equation (10.1) holds), putting all these values in equation (8.1) and
taking inverse laplace transform, one can obtain equation (11.3).
If the service facility is always available, then expected profit during the interval (0, 7] is
given by

E,(t)=K [P, (t)dt - K,
0

where K, and Ksare the revenue per unit time and service cost per unit time respectively,
then
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E, (t)= K, (-0.000930031927exp(~2.505671778&) +0.04293662 70 exp(~1.5266

15558¢)—0.1267823016exp(—1.133297414¢) —2.398054680exp(—0.11441

52498t)+0.6451612903)+2.4828303860) -1 K,
Keeping K;=1 and changing K, at 0.1, 0.2, 0.3, 0.4, 0.5, one can obtain Table 11.10 which

is depicted by Figure 11.13.

Time Reliability

1
0.8818145700
0.74TTTEATIE
0.6173205552
0.4397E95997
0.3987199139
0.3144607580
02457491596
01906294519
0.14659690933
0.1137299373

Time vs. Reliability

WO oo | il anun]ds | | =)

10
Table 11.1.

Time Availability

1
09220820146
0.8752317809
0.8439443755
0.8201728250
0.8004703654
0.7834175908
0. 7683837875
07350335375
0.74314573597
0.7325494011

WO o | sl | N | B wa | o e o
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Table 11.2. Time vs. Availability

A MLT.T.F.
001 | 7.E32101381
002 | 7386363636
0.03 6.982872 500
004 | 66176470538
0.05 6.285714784
0.06 | 5982905585
0.07 205505507
0.03 3451127813
0.08 | 5.216622459
0,10 | S.000000000

Table 11.3. A vs. MTTF
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Figure 11.2. Time vs. Availability

.

000,000, 030,040,050 04500 700005 0.1

MATTF
(=T R T T I - N - T

A

Figure 11.3. A vs. MTTF
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o, M.T.T.F.

0.01 9.318131318
0.0z 8. 70000000
0.03 B.269230769
002 7.B57142857
0.05 7.500000000
0.06 7.187500000
0.07 6.911764706
0.08 6.666666667
005 6.447368421
0.10 6. 250000000

Table 11.4. o, vs. MTTF

. M.T.T.F.

0.01 | 5.353535353
0.0 | 5.BBEEEEE%0
0.0 | B.461538460
0.04 | 8.095238097
0.05 | 7.777777797 |
0.06 | 7.500000000
0.07 | 7.254501960
0.08 | 7.027037037
0.08 | 6.842105263
0.10 | 6.566E6666T

Table 11.5. a, vs. MTTF

A Busy Period
0.01 1091966558
0.02 1245175063

.03 1384766263
0.04 1.512437811
0.05 1.629629630
0.06 1.737556562
007 1.837253311

0.08 1929606620
0.09 2015380739
0.10 2095238095

Table 11.6. A vs. Busy Period

A EMTTF
24
0.01 -47. 21555635
0.02 -42. 45222108
0.03 -38.34530213

0.04 -34.78229527
0.05 -31.67346938
0.06 -28.24659546
0.07 -26.54305958
0.08 -24 414389061
Q.09 -22.52257535
.10 -20.83333334

Table 11.7.Sensitivity analysis
for MTTF with respect to A
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o EMITF 0
ket 40 [0010.020.030.040.050.060.070.080.09 0.1
0.01 -61.98347107
0.02 -52.08333334 =20 4
0.03 -44 3TE69E23 -30 4
0.04 | -38.26530612 W
40 4
0.05 -33.33333333 E
0.06 |-29.29687500 =50 -
0.07 | -25.95155710 50 -
0.08 | -23.14814815 70 ]
0.09 |-20.77562327 a
010 =18.75000000
Table 11.8. Sensitivity analysis Figure 11.8. Sensitivity analysis
for MTTF with respect to a; for MTTF With respect to o,
oz SMTTE [ 0 ' ' ' ' ' ' ' ' ' 1
E‘a: 10 0.010.020.030.040.050.060.070.080.09 0.1
0.01 |-55.09641873 20 |

0.02 | -46.29629629
0.03 | -39.44773176
0.04 | -34.01360546
0.05 | -29.62962965 50
0.06 | -26.04166667

MTTF
&
[=1]

0.07 | -23.06805076 o0 o
0.08 | -20.57613163
0.09 | -18.46722068
0.10 | -16.66666666
Table 11.9. Sensitivity analysis Figure 11.9. Sensitivity analysis
for MTTF with respect to o, for MTTF with respect to a,

3Rt/ EN

h=0.2

Time
A=0.1

Figure 11.10. Sensitivity analysis for system reliability with various values of A
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Figure 11.11. Sensitivity analysis for system reliability with various values of o,
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Figure 11.12. Sensitivity analysis for system reliability with various values of a,

Table 11.10. Time vs. Expected Profit
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Time

E, ()

K,=0.1

K,=0.2

K,=0.3

K,=0.4

K,=0.5

0

0

0

0

0

0.857629472

0.757629472

0.657629472

0.557629472

0.457629472

1.654466194

1.454466194

1.254466194

1.054466194

0.854466194

2.413189453

2.113189453

1.813189453

1.513189453

1.213189453

3.144810992

2.744810992

2.344810992

1.944810992
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3.854870839

3.354870839

2.854870839

2.354870839

1.854870839
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3.346627106

2.746627106

2.146627106

5.222376092

4.522376092

3.822376092

3.122376092

2.422376092

5.883954727

5.083954727

4.283954727

3.483954727

2.683954727

6.532930141

5.632930141

4.732930141

3.832930141

2.932930141

— | O [0 |Q[N| N[ |W(N[— O

7.170676408

6.170676408

5.170676408

4.170676408

3.170676408
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Expected Profit
() [ [ [*8) ) (%3] (=] | =)

Time

Figure 11.13. Time vs. Expected Profit

12. CONCLUSIONS

Figure 11.1 shows the graph of “Reliability vs. Time” and its values have given in
Table 11.1. Analysis of Figure 11.1 yields that reliability of system decreases with the
increment in time.

Figure 11.2 shows the graph of “Availability vs. Time” and its values have given in
Table 11.2. Critical examination of Figure 11.2 concludes that availability decreases
in the beginning but thereafter it decreases approximately in constant manner.

Figures 11.3, 4 and 5 are the graphs of “M.T.T.F. vs. A", “M.T.T.F. vs. o,” and
“M.T.T.F. vs. a,”. The values have given in Tables 11.3, 4 and 5. Examination of
Figures 11.3, 4 and 5, reveals that M.T.T.F. of considered system decreases as we
increase in the values of failure rates A, o; and os,.

Figure 11.6 is the graph of “A vs. Busy Period” and its values have given in Table 11.6.
Observation of Figure 11.6 reveals that Busy Period increases as the value of A
increases.

The sensitivities of the system reliability with respect to system parameters A, o; and
ap are shown in Figures 11.10, 11 and 12. In Figure 11.10, along the time coordinate,
we show the sensitivity of system reliability with respect to A by varying A from 0.1,
0.2, 0.4 and 0.5 when the other two parameter are fixed at a; = 0.2 and a,= 0.3. The
sensitivities of various values of a; and a, on the system reliability are shown in
Figure 11.11and Figure 11.12 respectively. The influence of A, o, and a, on reliability
increases as A, o; and o, decreases. Moreover, Figures 11.7, 8 and 9 show that the
gross sensitivity of various values of A, a; and a, on the MTTF decreases from -
47.21555635 to -20.83333334, -61.98347107 to -18.75000000 and — 55.09641873 to -
16.66666666 as A, a; and a, increases from 0.01 to 0.10.

Keeping revenue cost per unit time K, at value 1 and varying service cost K, as 0.1,
0.2, 0.3, 0.4 and 0.5, Figure 11.13 is obtained. This graph reveals an important
conclusion that increasing service cost leads decrement in expected profit. The highest
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and lowest values of expected profit are obtained to be 7.1706 and 0.4576 respectively
for the assumed values. Expected profit decreases with the increment in K,.
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