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Abstract. This paper deals with the reliability analysis of a complex system with 
three possibilities at the time of repair. The considered system consists of two 
subsystems A and Bin series configuration (1-out-of-2: F). Subsystem A has n units 
which are connected in series whereas subsystem B consists of n units in parallel 
configuration. The configuration of subsystem A is of 1-out-of-n: F whereas 
subsystem B is of k-out-of-n: D and k+1-out-of-n: F nature. System has three states: 
Good, degraded and failed. Supplementary variable technique has been used for 
mathematical formulation of the model. Laplace transform is being utilized to solve 
the mathematical equation. Reliability, Availability, M.T.T.F., Busy Period and Cost 
effectiveness of the system have been computed. The repairs from state S7 to S0, S8 to 
S0, S9 to S0 and S11 to S0 have two types namely exponential and general. Joint 
probability distribution of repair rate from S7 to S0, S8 to S0, S9 to S0 and S11 to S0 is 
computed by Gumbel-Hougaard family of copula. Some particular cases of the 
system have also been derived to see the practical importance of the model. 
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1. INTRODUCTION 
 
The study of repairable systems is an important topic in reliability. Repairman is one 

of the essential parts of repairable systems, and can affect the economic benefit of the 
systems, directly or indirectly. The work forms of repairman may affect the performance 
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of the system. Therefore, he plays an important role on improving the reliability of the 
repairable systems. Khaled M. El-Said (2010) analyzed the cost–benefit analysis of a two-
unit cold standby system with two-stage repair of failed unit. The repair process is divided 
into two stages. In the first stage, the repairing process of the unit is started but it does not 
get completed; instead the process is completed in the second stage. A. M. Rashad, M. 
Salah EL-Sherbeny and Z. M. Hussien (2009) considered two-unit cold standby system 
with two types of repair-minor (regular) and major (expert). The first repairman (minor) 
will remain with the repair facility assuming that he might not be able to do some complex 
repair within some tolerable time. The second repairman (major) is called to the system if 
and only if the (minor) repairman is unable to do the job within time or when the two units 
are failed, whichever occurs first. DequanYue, Wuyi Yue and Hongjuan Qi (2008) studied 
a machine repairable system with spares and two repairmen. The first repairman never 
takes vacations and always available for serving the failed units. The second repairman 
leaves for a vacation under some conditions. Linmin Hu and Jiandong (2009) analyzed 
reliability characteristics of a three-dissimilar unit repairable system with one repairman, 
with assumption that the repairman leaves for a vacation if there are no failed units 
waiting for repair in the system. When he comes from the vacation and find the failed 
units, he starts to repair the failed units and if there are no failed units then he goes for 
another vacation. Mangey Ram and S. B. Singh (2008) studied the complex system 
considered consists of two independent repairable subsystems A and B in series. The 
system is analyzed under preemptive-resume repair policy. Subsystem A is assumed to be 
priority unit while subsystem is non-priority unit. Here, whenever subsystem B is under 
repair and at the same time subsystem A fails, the repairing of subsystem B is stopped and 
subsystem A is taken for the repair. The repair of subsystem B is started from the point 
where it was left earlier as soon as repair of A is completed. Rakesh Gupta, C. K. Goel 
and ArchanaTomer (2010) considered two non-identical unit standby system model with 
single repair facility which appears and disappears from the system randomly assuming 
that when the repairman starts the repair of a failed unit, he does not leave the system till 
all the units are repaired that has failed during his service. S. K. Singh (1989) considered 
two-unit cold standby system with the assumption that the service facility appears and 
disappears from the system randomly. S. M. Rizwan, H. Chauhan and G. Taneja (2005) 
examined one unit and two unit systems with the concept of accident during inspection 
and possibility of multiple post repair inspection with the assumption that accident takes 
place during inspection of repaired unit and the harms the repairman in such a way that he 
is not capable to do the job. Then another repairman is called to repair the failed unit. 
There may be many situations in practical life such as: (i) The repair cost of failed unit is 
much greater than the cost of new unit. In such condition the failed unit should be replace 
by new unit (ii) The repairman disappears at the time of repair of failed unit. In this case 
the system stops working till the repairman comes and repairs the failed unit (iii) 
Sometimes when a repairman is busy in repair of failed unit, an accident takes place 
during repair. The repairman is injured in accident and cannot do his job further. 

Keeping the above facts in mind, the aim of this paper is to analyze the reliability of a 
complex system including all three possibilities at the time of repair of failed unit which 
have not been considered simultaneously by earlier researchers. The considered system 
consists of two subsystems A and B in series configuration (1-out-of-2: F). Subsystem A 
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has n units, connected in series whereas subsystem B consists of n units in parallel. The 
configuration of subsystem A is of 1-out-of-n: F whereas subsystem B is of k-out-of-n: D 
and k+1-out-of-n: F nature. System has three states: Good, degraded and failed. Here, 
following three possibilities have been considered for the failure of subsystem: (i) If the 
repairman is available when a subsystem fails then he repairs the failed subsystem and if 
the repairman disappears from the system at the time of repair of failed subsystem. Then 
system starts working when a repairman comes and repairs the failed subsystem. (ii) 
When the repairman is busy in the repair of failed subsystem, an accident takes place 
during the repair. The repairman is injured and does not capable to continue the job, in this 
situation the new repairman is called to do the job. The new repairman repairs the failed 
subsystem afresh with more care and attention. (iii) If the subsystem is taken maximum 
time for repair then it should be replaced by new unit. The repair times follow exponential 
and general time distributions respectively. At states S7, S8, S9 and S11 both the subsystems 
are completely failed and being repaired with two different repair rates. The repairs from 
state S7 to S0, S8 to S0, S9 to S0 and S11 to S0 have two types namely exponential and 
general. Joint probability distribution of repair rate from S7 to S0, S8 to S0, S9 to S0 and S11 
to S0 is computed by Gumbel-Hougaard family of copula (2006). The system is studied by 
using the supplementary variable technique, Laplace transformation and Gumbel-
Hougaard family of copula to obtain reliability, availability, M.T.T.F., busy period, 
sensitivity analysis and cost effectiveness of the system. At last some numerical examples 
have been taken to discuss the particular cases. 

 
 

2. ASSUMPTIONS 
 
1) Initially the system is in perfectly good state i.e. all the units are functioning perfectly. 
2) At t = 0 all the components are perfect and t > 0 they start operating. 
3) The system consists of two subsystem A and B are connected in series (1-out-of-2: F). 

Subsystem A has n units are connected in series whereas subsystem B consists of n 
units in parallel configuration. 

4) The configuration of subsystem A is of 1-out-of-n: F whereas subsystem B is of k-out-
of-n: D and k+1-out-of-n: F nature. 

5) System has three states: Good, degraded and failed. 
6) When a subsystem fails, we consider three possibilities. 

(a) If the repairman is available with the system when the subsystem has failed. Then 
he repairs the subsystem and if he disappears from the system at the time of repair 
of failed subsystem. Then the system will start when he comes after a particular 
amount of time and repairs the failed subsystem.     

(b) Repairman may meet with an accident when he is busy in repair of the failed 
subsystem in a way that he is not capable to repair the failed subsystem. Then new 
repairman is called to do the job. We assumed that the new repairman repaired the 
failed subsystem with more carefully so that no further accident occurs. 

(c) If the repairman does not repair the failed subsystem within maximum repair time 
then he replaced failed subsystem by new one.  
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7) The repaired subsystem is as good as new and is immediately reconnected to the 
system. 

8) Transition from the completely failed state S7 to the initial state S0, completely failed 
state S8 to the initial state S0, completely failed state S9 to initial state S0, completely 
failed states S11 to initial state S0 follows two different distributions. 

9) Joint probability distribution of repair rate from S7 to S0, S8 to S0, S9 to S0 and S11 to S0 
is computed by Gumbel-Hougaard family of copula. 
 
 

3. STATE SPECIFICATION 
 

G: Good state, D: Degraded state, Fr: Failed unit under repair, F: Failed unit 
 

Table 3.1. State specification 

States 
Subsystems 

System state 
A B 

S0 G G G 

S1 Fr G Fr 

S2 F G F 

S3 Fr G Fr 

S4 Fr G Fr 

S5 Fr G Fr 

S6 G D D 

S7 Fr Fr Fr 

S8 Fr Fr Fr 

S9 Fr Fr Fr 

S10 F F F 

S11 Fr Fr Fr 

S12 G Fr Fr 

S13 G Fr Fr 

S14 G Fr Fr 

S15 G                F F 

S16 G   Fr Fr 

 



B. Nailwal and S. B. Singh                                                                                                                                 19 

4. BLOCK AND STATE TRANSITION DIAGRAM 

              

Figure 4.1. Block and state transition diagram 

 
5. NOTATIONS 

 
λ : Constant failure rate of subsystem A 

2,1 αα : Constant failure rates of subsystem B. Where ∑∑
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)(tPi : Probability that the system is in Si state at instant t for I = 1 to 16. 
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:)(sPi Laplace transform of )(tPi  
γ        : Accident rate 
θ        : Maximum repair time 

)(1 xu : Repair rate of subsystem A 
)(2 xu : Repair rate of subsystem B 
)(1 yφ : Repair rate of subsystem A after an accident takes place 
)(2 yφ : Repair rate of subsystem B after an accident takes place 
)(1 zv : Replacement rate of subsystem A 
)(2 zv : Replacement rate of subsystem B 
)(tE p : Expected profit during the interval (0, t]. 

21 KK : Revenue per unit time and service cost per unit time respectively 
)(xφ   : Coupled repair rate  

FxFx /)( : Marginal distribution of random variables, where x
x exF =)( and 

)(,)(,)( 222 xvxxuF φ=  
 
Letting x

x exF =)( and )(,)(,)( 222 xvxxuF φ= , the expression for joint probability 
(failed state S7 to good state S0, failed state S8 to good state S0, failed state S9 to good state 
S0 and failed state S11 to initial state S0) according to Gumbel-Hougaard family of copula 
is given by 

[ ]θθθ
1

2 ))(log(exp)( xuxxu += , [ ]θθθ φφ
1

2 ))(log(exp)( yyy +=  

[ ]θθθ
1

2 ))(log(exp)( zvzzv +=  
 
 

6. FORMULATION OF MATHEMATICAL MODEL 
 

By probability consideration and continuity arguments the following difference-
differential equations governing the behavior of the system seems to be good. 
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)(),0( 13 tPtP γ=                                                                                                             (6.19)
)(),0( 14 tPtP θ=                                                                                                             (6.20)
)(),0( 25 tPYtP =                                                                                                            (6.21)
)(),0( 016 tPtP α=                                                                                                           (6.22)

)(),0( 67 tPtP λ=                                                                                                            (6.23)
)(),0( 78 tPtP γ=                                                                                                            (6.24)
)(),0( 79 tPtP θ=                                                                                                            (6.25)
)(),0( 1011 tPYtP =                                                                                                          (6.26)
)(),0( 6212 tPtP α=                                                                                                         (6.27)

)(),0( 1213 tPtP γ=                                                                                                           (6.28)
)(),0( 1214 tPtP θ=                                                                                                          (6.29)
)(),0( 1516 tPYtP =                                                                                                          (6.30)

 
Initial condition: 

1)0(0 =P , and other state probabilities are zero at t=0. 
 
 

7. SOLUTION OF THE MODEL 
 

Taking Laplace transformation of (6.1) to (6.30) and on further simplification, one may 
obtain: 
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Boundary conditions: 
 

)(),0( 01 tPtP γ=                                                                                                              (6.18)
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It is worth nothing that 
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8. EVALUATION OF LAPLACE TRANSFORMATION OF UP AND DOWN 
STATE PROBABILITIES 

 
The Laplace Transformation of the probabilities that the system is in operable and 

down state at time ‘t’ can be evaluated as follows. 
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9. ASYMPTOTIC BEHAVIOR OF THE SYSTEM 
 
Using Abel’s lemma in Laplace transformation viz. 

provided that the limit on right hand exists in (8.1) and (8.2), the time independent up and 
down state probabilities are obtained as follows: 
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10. PARTICULAR CASE 
 

(1) When repair follows exponential distribution 
In this case the result can be derived by putting 
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in equations (7.1)-(7.18) , we get 
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(2) When accident do not take place when the failed unit is repaired by the repairman. 
In this case the result can be derived by putting γ=0 in equations (7.1-18), Laplace 

transformation of various state probabilities are as follows: 
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11. NUMERICAL COMPUTATION 
 

(1)  Reliability analysis 
Assuming that the equation (10.1) holds then the reliability of the system is given by 
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Taking inverse Laplace Transformation, we have 
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For numerical illustration, let us consider the values λ = 0.1, α1 = 0.2, α2 = 0.3 and t = 0, 1, 
2, 3, …. Using these values in equation (11.2), we compute the Table 11.1 and 
corresponding graph has been shown in Figure 11.1. 

 
(2) Availability analysis 

Assuming the parameters λ = 0.1, α1 = 0.2, α2 = 0.3, γ = 0.4, θ = 0.5, X = 0.6, Y = 
0.08, repair rates Φ = Φ1 = Φ2 = u = u1 = u2 = v = v1 = v2 = 1, and x = y = z = 1, and letting 
that equation (10.1) holds. Putting all these values in equation (8.1) and taking inverse 
Laplace transformation, we get 

612903
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Now in equation (11.3) setting t = 0,1,2,3,4,5,6,7,8,9,10, one can obtain Table 11.2. The 
same is shown in Figure 11.2 which shows the variation of availability with respect to 
time. 

 
(3)  M.T.T.F. analysis 

Letting the equation (10.1) holds then the mean time to failure (M.T.T.F.) of the 
system is given by  
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                                              (11.4)
 
1) Taking the values α1 = 0.2, α2 = 0.3, and λ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08, 0.09, 0.10, one can obtain Table11.3 which shows how M.T.T.F. changes with 
respect to λ. 

2) Varying α1 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, and keeping 
other parameter fixed at λ = 0.1, α2 = 0.3, one can get the change of M.T.T.F. with 
respect to α1 as given in Table11.4. 

3) Assuming λ = 0.1, α1 = 0.2, and α2  as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 
0.09, 0.10. The variation of M.T.T.F. with respect to α2 is obtained which is given in 
Table11.5. 
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(4)  Busy period analysis 
 Let the equation (10.1) holds then Mean time to repair (M.T.T.R.) of the system is 

given by  
)(....

0
sPLimRTTM down

s→
=

 
Letting Φ = Φ1 = Φ2 = u = u1 = u2 = v = v1 = v2 = 1, x = y = z = 1, α1 = 0.2, α2 = 0.3, γ = 0.4, 
θ = 0.5, X = 0.6, Y = 0.08 and varying λ as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 
0.09, 0.10, one can obtain Table 11.6. This is shown in Figure 11.6 which demonstrates 
how busy period changes with respect to λ. 
 
(5) Sensitivity analysis 

Assuming that the equation (10.1) holds. We first perform a sensitivity analysis for 
changes in R(t) resulting from changes in system parameters λ, α1 and α2. Differentiating 
equation (11.1) with respect to λ, we get 
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Taking inverse Laplace transform, we obtain 
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Using the same procedure described above, we can get 
1

)(
α∂

∂ tR and 
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Then we perform a sensitivity analysis of changes in M.T.T.F. with respect to λ, α1, and α2. 
Differentiating equation (11.4) with respect to λ, we obtain 
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Using the same procedure, 
1α∂

∂MTTF  and 
2α∂

∂MTTF  can be obtained. Numerical results of 

the sensitivity analysis for the system reliability and the MTTF are presented in 
Figures11.7, 8, 9, 10, 11 and 12. 
 
(6) Cost analysis 

Assuming Φ = Φ1 = Φ2 = u = u1 = u2 = v = v1 = v2 = 1, x = y = z = 1, λ = 0.1, α1 = 0.2, 
α2 = 0.3, γ = 0.4, θ = 0.5, X = 0.6, Y = 0.08. Furthermore if the repair follows exponential 
distribution (i.e. equation (10.1) holds), putting all these values in equation (8.1) and 
taking inverse laplace transform, one can obtain equation  (11.3).

 

If the service facility is always available, then expected profit during the interval (0, t] is 
given by 

∫ −=
t

upP tKdttPKtE
0

21 )()(  

where K1 and K2are the revenue per unit time and service cost per unit time respectively, 
then 
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Keeping K1=1 and changing K2 at 0.1, 0.2, 0.3, 0.4, 0.5, one can obtain Table 11.10 which 
is depicted by Figure 11.13. 
 

           
Table 11.1. Time vs. Reliability            Figure 11.1. Time vs. Reliability 

 

          
Table 11.2. Time vs. Availability           Figure 11.2. Time vs. Availability 

 

            
Table 11.3. λ vs. MTTF                         Figure 11.3. λ vs. MTTF 
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Table 11.4. α1 vs. MTTF                 Figure 11.4. α1 vs. MTTF 

  

            
Table 11.5. α2 vs. MTTF                     Figure 11.5. α2 vs. MTTF 

 

            
Table 11.6. λ vs. Busy Period               Figure 11.6. λ vs. Busy Period 
 

        
Table 11.7.Sensitivity analysis                 Figure 11.7.Sensitivity analysis 

for MTTF with respect to λ                     for MTTF with respect to λ 
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Table 11.8. Sensitivity analysis                 Figure 11.8. Sensitivity analysis 

for MTTF with respect to α1                               for MTTF With respect to α1 

 

          
Table 11.9. Sensitivity analysis                 Figure 11.9. Sensitivity analysis  

for MTTF with respect to α2                               for MTTF with respect to α2 
 

 
Figure 11.10. Sensitivity analysis for system reliability with various values of λ 
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Figure 11.11. Sensitivity analysis for system reliability with various values of α1 

 

 
Figure 11.12. Sensitivity analysis for system reliability with various values of α2 

 
Table 11.10. Time vs. Expected Profit 

Time )(tE p  
 K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 
0 0 0 0 0 0 
1 0.857629472 0.757629472 0.657629472 0.557629472 0.457629472 
2 1.654466194 1.454466194 1.254466194 1.054466194 0.854466194 
3 2.413189453 2.113189453 1.813189453 1.513189453 1.213189453 
4 3.144810992 2.744810992 2.344810992 1.944810992 1.544810992 
5 3.854870839 3.354870839 2.854870839 2.354870839 1.854870839 
6 4.546627106 3.946627106 3.346627106 2.746627106 2.146627106 
7 5.222376092 4.522376092 3.822376092 3.122376092 2.422376092 
8 5.883954727 5.083954727 4.283954727 3.483954727 2.683954727 
9 6.532930141 5.632930141 4.732930141 3.832930141 2.932930141 
10 7.170676408 6.170676408 5.170676408 4.170676408 3.170676408 
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Figure 11.13. Time vs. Expected Profit 

 
 

12. CONCLUSIONS 
 

1) Figure 11.1 shows the graph of “Reliability vs. Time” and its values have given in 
Table 11.1. Analysis of Figure 11.1 yields that reliability of system decreases with the 
increment in time. 

2) Figure 11.2 shows the graph of “Availability vs. Time” and its values have given in 
Table 11.2. Critical examination of Figure 11.2 concludes that availability decreases 
in the beginning but thereafter it decreases approximately in constant manner. 

3) Figures 11.3, 4 and 5 are the graphs of “M.T.T.F. vs. λ”, “M.T.T.F. vs. α1” and 
“M.T.T.F. vs. α2”. The values have given in Tables 11.3, 4 and 5. Examination of 
Figures 11.3, 4 and 5, reveals that M.T.T.F. of considered system decreases as we 
increase in the values of failure rates λ, α1 and α2. 

4) Figure 11.6 is the graph of “λ vs. Busy Period” and its values have given in Table 11.6. 
Observation of Figure 11.6 reveals that Busy Period increases as the value of λ 
increases. 

5) The sensitivities of the system reliability with respect to system parameters λ, α1 and 
α2 are shown in Figures 11.10, 11 and 12. In Figure 11.10, along the time coordinate, 
we show the sensitivity of system reliability with respect to λ by varying λ from 0.1, 
0.2, 0.4 and 0.5 when the other two parameter are fixed at α1 = 0.2 and α2 = 0.3. The 
sensitivities of various values of α1 and α2 on the system reliability are shown in 
Figure 11.11and Figure 11.12 respectively. The influence of λ, α1 and α2 on reliability 
increases as λ, α1 and α2 decreases. Moreover, Figures 11.7, 8 and 9 show that the 
gross sensitivity of various values of λ, α1 and α2 on the MTTF decreases from -
47.21555635 to -20.83333334, -61.98347107 to -18.75000000 and – 55.09641873 to -
16.66666666 as λ, α1 and α2 increases from 0.01 to 0.10. 

6) Keeping revenue cost per unit time K1 at value 1 and varying service cost K2 as 0.1, 
0.2, 0.3, 0.4 and 0.5, Figure 11.13 is obtained. This graph reveals an important 
conclusion that increasing service cost leads decrement in expected profit. The highest 
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and lowest values of expected profit are obtained to be 7.1706 and 0.4576 respectively 
for the assumed values. Expected profit decreases with the increment in K2. 
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