연료전지 응용을 위한 다공성막에 가교된 PVA/PSSA-MA/THS-PSA의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA/THS-PSA for Fuel Cell Applications

  • 김일형 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 김성표 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 이학민 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 박찬종 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Kim, Il-Hyoung (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Kim, Sung-Pyo (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Hak-Min (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Park, Chan-Jong (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Rhim, Ji-Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong-Ihl (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 투고 : 2011.08.22
  • 심사 : 2011.09.29
  • 발행 : 2011.09.30

초록

본 연구는 고내구성을 가진 고분자 전해질 막을 제조하는 것으로 연료전지에 적용하기 위하여 poly(vinyl alcohol)를 주쇄부로 하여 poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)와 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA)를 polyethylene막에 함침시켜 막을 제조하였다. 제조된 막을 함수율, 접촉각, FT-IR, 수소이온전도도, 탄성계수 등의 측정을 통해 친수성 고분자가 함침된 막의 특성평가를 실시하였다. FT-IR 분석과 접촉각 측정을 통해 PE막에 함친된 막에서 친수성기의 유무를 확인하였다. 수소이온전도도를 측정한 결과 30% THS-PSA의 막이 $55^{\circ}C$에서 $1.27{\times}10^{-1}S/cm$의 값을 나타내어 우수한 수소이온전도도를 나타내었으며, 탄성계수의 측정을 통해 polyethylene막에 비하여 THS-PSA가 함침된 막의 기계적 강도가 15%까지는 최대 7배까지 향상되어 막의 내구성이 향상되었음을 확인하였다.

This study deals with the preparation of polymeric electrolyte membranes having high durability for the application of fuel cells. The membranes under investigation were prepared the impregnation to porous polyethylene membranes with poly(vinyl alcohol)(PVA), poly(styrene sulfonic acid-co-maleic acid), and (PSSA-MA)3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA). To characterize the resulting membranes, the water contents, the contact angles, FT-IR, the proton conductivity and the the modulus were measured. The proton conductivity of 30% content of THS-PSA at $55^{\circ}C$ gave excellent $1.27{\times}10^{-1}S/cm$ and the mechanical strength was improved 7 times higher up to the THS-PSA content 15%, as a result, the durability was elevated extensively.

키워드

참고문헌

  1. J. Larminie and A. Dicks, "Fuel cell systems Explained", 2nd Ed. John Wiley & Sons Ltd., Vol. 93, p. 285 (2003).
  2. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cell", Solid State Ionics, 147, 189 (2002). https://doi.org/10.1016/S0167-2738(02)00011-5
  3. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, " Development and performance characterization of new electrocatalysts for PEMFC" , J. Power Sources, 106, 206 (2002). https://doi.org/10.1016/S0378-7753(01)01040-0
  4. Y. M. Lee and H. B. Park, " Development of Membrane Materials for Direct Methanol Fuel Cell" , Membrane Journal, 10, 103 (2000).
  5. M. P. Hogarth and G. A. Hard, " Direct Methanol Fuel Cell" , Platinum Met. Rev., 40(4), 150 (1996).
  6. V. Ramani, H. R. Kunz, and J. M. Fenton, " Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation" , J. Membr. Sci., 232, 31 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  7. J. Lin, H. Wang, S. Cheng, and K. Chan, " Nafionpolyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells" , J. Membr, Sci., 246, 95 (2005). https://doi.org/10.1016/j.memsci.2004.08.016
  8. Z. Q. Ma, P. Cheng, and T. S. Zhao, " A Palladium- alloy deposited Nafion membrane for direct methanol fuel cells" , J. Membr. Sci., 215, 327 (2005).
  9. S. Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, " Properties of electro-responsive poly(vinyl alcohol)/Poly(acrylic acid) IPN hydrogels under an electric stimulus" , J. App. Polym. Sci., 73, 1675 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  10. H. I. Cho, M. Y. Seo, D. H. Kim, I. C. Pack, S. Y. Nam, and J. W. Seo, " Pervaporation Separation of Water/Ethanol Mixture Using PVA/PSSA_MA Ion Exchange Membrane" , Membrane Journal, 16(3), 203 (2006).
  11. Z. Maolin, L. Jun, Y. Min, and H. Hongfei, " The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of poly- NIPPAm and hydrophilic polymers" , Radiation Physics and Chemistry, 58, 397 (2000). https://doi.org/10.1016/S0969-806X(99)00491-0
  12. R. Guo, C. Hu, F. Pan, H. Wu, and Z. Jiang, " PVAGPTMS/ TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution" , J. Membr. Sci., 281, 454 (2006). https://doi.org/10.1016/j.memsci.2006.04.015
  13. T. I. Yun, M. Y. Seo, H. I. Cho, S. Y. Ha, S. Y. Nam, and J. W. Rhim, " Performance Investigating of water Vapor Permeation using PVA/PSSA_MA Membranes" , Membrane Journal, 16(2), 153 (2006).
  14. L. Ketan, Vora A, G. Buckton, and D. Claphamb, " The use of dynamic vapour sorption and near infra-red spectroscopy (DVS-NIR) to study the crystal transitions of theophylline and the report of a new solid-state transition" , J. Pharm. Sci., 22, 97 (2004).
  15. K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Studies on bound water of cellulose by differential scanning calorimetry, Textile Res. J., 51, 607 (1981). https://doi.org/10.1177/004051758105100909
  16. A. Higuchi and T. Iiljima, "DSC investigation of the states of water in poly(vinyl alcohol) membranes", Polymer, 26, 1207 (1985). https://doi.org/10.1016/0032-3861(85)90254-X