Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes

Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향

  • Jeon, Sung-Il (Green House Gas Center, Korea Institute of Energy Research) ;
  • Park, Jung-Hoon (Green House Gas Center, Korea Institute of Energy Research) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, Chung Nam National University)
  • 전성일 (한국에너지기술연구원, 온실가스센터) ;
  • 박정훈 (한국에너지기술연구원, 온실가스센터) ;
  • 이용택 (충남대학교 화학공학과)
  • Received : 2011.09.16
  • Accepted : 2011.09.27
  • Published : 2011.09.30

Abstract

The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.

팔라듐이 코팅된 $V_{53}Ti_{26}Ni_{21}$ 합금 분리막을 통해 수소 투과시 혼합가스의 영향에 대해 알아보았다. 순수 수소, 수소, 이산화탄소 및 일산화탄소의 혼합가스를 공급가스로 주입할 때, $450^{\circ}C$, 1-3 bar의 압력에서 팔라듐이 코팅된 $V_{53}Ti_{26}Ni_{21}$ 합금 분리막의 수소 투과 실험을 수행하였다. 수소만을 공급한 투과 실험에서 팔라듐 코팅된 $V_{53}Ti_{26}Ni_{21}$ 합금 분리막(두께: 0.5 mm)의 수소 투과량은 3 bar, $450^{\circ}C$ 조건에서 $5.36mL/min/cm^2$였다. 또한 수소/이산화탄소, 수소/일산화탄소 및 수소/이산화탄소/일산화탄소를 공급한 투과실험에서 $V_{53}Ti_{26}Ni_{21}$ 합금 분리막의 수소 투과량은 각각 4.46, 5.20, $3.91mL/min/cm^2$였다. 따라서, 수소/이산화탄소, 수소/일산화탄소 및 수소/이산화탄소/일산화탄소 혼합가스를 각각 공급할 때 투과량은 온도와 압력에 상관없이 수소 분압 감소만큼 감소하였고 모든 경우 Sievert 법칙을 잘 만족시켰다. 투과 후 분리막의 XRD 결과로부터 $V_{53}Ti_{26}Ni_{21}$ 합금 분리막은 여러 혼합가스에 대해 안정성과 내구성이 우수하다는 것을 알 수 있었다.

Keywords

References

  1. T. M. Adams and J. Mickalonis, "Hydrogen permeability of multiphase V- Ti- Ni metallic membranes", Mater. Lett., 61, 817 (2007). https://doi.org/10.1016/j.matlet.2006.05.078
  2. J. Shu, B. P. A. Grandjean, A. V. Neste, and S. Kaliaguine, "Catalytic palladium- based membrane reactors: a review", Can. J. Chem. Eng., 69, 1036 (1991). https://doi.org/10.1002/cjce.5450690503
  3. R. Bredesen, K. Jordal, and O. Bolland, "Hightemperature membranes in power generation with $CO_2$ capture", Chem. Eng. Process., 43, 1129 (2004). https://doi.org/10.1016/j.cep.2003.11.011
  4. S. Konishi, H. Yoshida, and Y. Naruse, "Adesign study of a palladium diffuser for a D- T fusion reactor fuel clean- up system", J. Less Common Met., 89, 457 (1983). https://doi.org/10.1016/0022-5088(83)90356-9
  5. W. Wang, K. Ishikawa, and K. Aoki, "Microstructural change- induced lowering of hydrogen permeability in eutectic Nb- TiNi alloy", J. Membr. Sci., 351, 65 (2010). https://doi.org/10.1016/j.memsci.2010.01.029
  6. R. E. Buxbaum and T. L. Marker, "Hydrogen through non- porous membranes of palladium- coated niobium, tantalum and vanadium", J. Membr. Sci., 85, 29 (1993). https://doi.org/10.1016/0376-7388(93)85004-G
  7. R. E. Buxbaum and A. B. Kinney, "Hydrogen transport through tubular membranes of palladiumcoated tantalum and niobium", Ind. Eng. Chem. Res., 35, 530 (1996). https://doi.org/10.1021/ie950105o
  8. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Hydrogen permeation characteristics of V- Ni- Al alloys", Int. J. Hydrogen Energy, 28, 1229 (2003).
  9. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Preparation of palladium- coatied V and V- 15Ni membranes for hydrogen purification by electroless plating technique", Int. J. Hydrogen Energy, 28, 297 (2003). https://doi.org/10.1016/S0360-3199(02)00065-4
  10. Y. Zhang, T. Ozaki, M. Komaki, and C. Nishimura, "Hydrogen permeation characteristics of vanadiumaluminium alloys", Scr. Mater., 47, 601 (2002). https://doi.org/10.1016/S1359-6462(02)00218-X
  11. C. Nishimura, M. Komaki, S. H. Wang, and M. Amano, "V- Ni alloy membranes for hydrogen purification", J. Alloys Compd., 330- 332, 902 (2002).
  12. S. Hara, K. Sakaki, N. Itoh, H.-M. Kimura, K. Asami, and A. Inoue, "An amorphous alloy membrane without noble metals for gaseous hydrogen separation", J. Membr. Sci., 164, 289 (2000). https://doi.org/10.1016/S0376-7388(99)00192-1
  13. M. D. Dolan, "Non- Pd BCC alloy membranes for industrial hydrogen separation", J. Membr. Sci., 362, 12 (2010). https://doi.org/10.1016/j.memsci.2010.06.068
  14. K. Hashi, K. Ishikawa, T. Matsuda, and K. Aoki, "Hydrogen permeation characteristics of multiphase Ni- Ti- Nb alloys", J. Alloys Compd., 368, 215 (2004). https://doi.org/10.1016/j.jallcom.2003.08.064
  15. C. Nishimura, M. Komaki, and M. Amano, "Hydrogen permeation characteristics of vanadiummolybdenum alloys", Trans. Mat. Res. Soc. Jpn., 18B 1273 (1994).
  16. C. Nishimura, T. Ozaki, M. Komaki, and Y. Zhang, "Hydrogen permeation and transmission electron microscope observations of V- Al alloys", J. Alloys Compd., 356, 295 (2003).
  17. K. Hashi, K. Ishikawa, T. Matsuda, and K. Aoki, "Hydrogen permeation characteristics of (V, Ta)- Ti- Ni alloys", J. Alloy. Compd., 404, 273 (2005).
  18. W. Wang, X. Pan, X. Zhang, W. Yang, and G. Xiong, "The effect of co- existing nitrogen on hydrogen peremation through thin Pd composite membranes", Sep. Purif. Technol., 54, 262 (2007). https://doi.org/10.1016/j.seppur.2006.09.016
  19. A. Unemoto, A. Kaimai, K. Sato, T. Otake, K. Yashiro, J. Mizukaki, T. Kawada, T. Tsuneki, Y. Shirasaki, and I. Yasuda, "The effect of co- existing gases from the process of steam reforming reaction on hydrogen permeability of palladium alloy mem brane at high temperatures", Int. J. Hydrogen Energy, 32, 2881 (2007). https://doi.org/10.1016/j.ijhydene.2007.03.037
  20. J. H. Park, E. Magnone, S. I. Jeon, and I. H. Baek, "Preparation, characterization and stability of vanadium/$Y_2O_3$- stabilized $ZrO_2$ composite membranes under different atmospheres", J. Membr. Sci., 370, 149 (2011). https://doi.org/10.1016/j.memsci.2011.01.010
  21. H. Li, A. Goldbach, W. Li, and H. Xu, "PdC formation in ultra- thin Pd membranes during separation of $H_2$/CO mixtures", J. Membr. Sci., 299, 130 (2007). https://doi.org/10.1016/j.memsci.2007.04.034
  22. S. I. Jeon, J. H. Park, S. J. Lee, and S. H. Choi, "Fabrication and stability of V/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 62 (2010).
  23. S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
  24. S. I. Jeon, J. H. Park, and Y. T. Lee, "Fabrication of Pd/YSZ cermet membrane for hydrogen separation", Membrane Journal, 21, 148 (2011).
  25. S. I. Jeon, E. Magnone, J. H. Park, and Y. T. Lee, "The effect of temperature and pressure on the hydrogen permeation through Pd- coated $Ti_{26}Ni_{21}V_{53}$ alloy membrane under different atmospheres", Mater. Lett., 65, 2495 (2011). https://doi.org/10.1016/j.matlet.2011.04.092
  26. A. Basile, F. Gallucci, A. Iulianelli, G. F. Tereschenko, M. M. Ermilova, and N. V. Orekhova, "Ti- Ni- Pd dense membranes- The effect of the gas mixtures on the hydrogen permeation", J. Membr. Sci., 310, 44 (2008). https://doi.org/10.1016/j.memsci.2007.10.028