Abstract
In this paper, we propose a recognition application of facial expression for laughter theraphy on smartphone. It detects face region by using AdaBoost face detection algorithm from the front camera image of a smartphone. After detecting the face image, it detects the lip region from the detected face image. From the next frame, it doesn't detect the face image but tracks the lip region which were detected in the previous frame by using the three step block matching algorithm. The size of the detected lip image varies according to the distance between camera and user. So, it scales the detected lip image with a fixed size. After that, it minimizes the effect of illumination variation by applying the bilateral symmetry and histogram matching illumination normalization. After that, it computes lip eigen vector by using PCA(Principal Component Analysis) and recognizes laughter expression by using a multilayer perceptron artificial network. The experiment results show that the proposed method could deal with 16.7 frame/s and the proposed illumination normalization method could reduce the variations of illumination better than the existing methods for better recognition performance.
본 논문에서는 스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션을 제안한다. 제안된 방법에서는 스마트폰의 전면 카메라 영상으로부터 AdaBoost 얼굴 검출 알고리즘을 이용하여 얼굴을 검출한다. 얼굴을 검출한 다음에는 얼굴 영상으로부터 입술 영역을 검출한다. 그 다음 프레임부터는 얼굴을 검출하지 않고 이전 프레임에서 검출된 입술영역을 3단계 블록 매칭 기법을 이용하여 추적한다. 카메라와 얼굴 사이의 거리에 따라 입술 영역의 크기가 달라지므로, 입술 영역을 구한 다음에는 고정된 크기로 정규화한다. 그리고 주변 조명 상태에 따라 영상이 달라지므로, 본 논문에서는 히스토그램 매칭과 좌우대칭을 결합하는 조명 정규화 알고리즘을 이용하여 조명 보정 전처리를 함으로써 조명에 의한 영향을 줄일 수 있도록 하였다. 그 다음에는 검출된 입술 영상에 주성분 분석을 적용하여 특징 벡터를 추출하고 다층퍼셉트론 인공신경망을 이용하여 실시간으로 웃음 표정을 인식한다. 스마트폰을 이용하여 실험한 결과, 제안된 방법은 초당 16.7프레임을 처리할 수 있어서 실시간으로 동작 가능하였고 인식률 실험에서도 기존의 조명 정규화 방법보다 개선된 성능을 보였다.