

Journal of Information Processing Systems, Vol.7, No.1, March 2011 DOI : 10.3745/JIPS.2011.7.1.173

173

Virus Detection Method based on Behavior
Resource Tree

Mengsong Zou*, Lansheng Han*, Ming Liu* and Qiwen Liu*

Abstract—Due to the disadvantages of signature-based computer virus detection
techniques, behavior-based detection methods have developed rapidly in recent years.
However, current popular behavior-based detection methods only take API call
sequences as program behavior features and the difference between API calls in the
detection is not taken into consideration. This paper divides virus behaviors into separate
function modules by introducing DLLs into detection. APIs in different modules have
different importance. DLLs and APIs are both considered program calling resources.
Based on the calling relationships between DLLs and APIs, program calling resources
can be pictured as a tree named program behavior resource tree. Important block
structures are selected from the tree as program behavior features. Finally, a virus
detection model based on behavior the resource tree is proposed and verified by
experiment which provides a helpful reference to virus detection.

Keywords—Computer Virus, Behavior-Based Detection, Dynamic Link Library, Behavior
Resource Tree

1. INTRODUCTION
Most current anti-virus software employs a signature-based detection technique which is im-

plemented under the premise that virus signatures are already known [1]. However, as the out-
break of polymorphic viruses and other new kinds of viruses, it is difficult to collect all the vi-
ruses’ signatures. Because of the disadvantages of signature-based detection, behavior-based
virus detection techniques have made rapid progress in recent years [2].

Researchers have proposed several behavior-based virus detection methods, such as Bayes,
Support Vector Machine, Decision Tree and so on [3]. D. Wagner and D. Dean drew a control
flow graph by analyzing program source code which is hard to obtain [4]. J-Y. Xu [5] and J.
Bergeron [6] monitored program behavior by taking API calling sequences as behavior features.
However, this method treated every API equally. In other words, different APIs were considered
to have equivalent importance. Yet, because of the deviation in design purpose, viruses and be-
nign programs must show differences in their API calls [7]. That is to say, some APIs have dis-
tinguishing call frequencies between viruses and benign programs. Thus it is unreasonable to
treat all APIs completely equally. E. Stinson and J. Mitchell noticed this and classified API calls
by function modules [8]. But they did not mention the different importance among modules.
Programs call API functions by loading relevant DLLs while APIs in certain DLLs have certain
functions. The special behavior of viruses such as propagation, hide, self-copy, etc. are imple-

Manuscript received August 11, 2010; accepted September 3, 2010.
Corresponding Author: Lansheng Han
* Department of Computer Science and Technology, Huazhong University of Science & Technology, CHINA

({stonezms, hanlansheng}@hotmail.com, {liuming2008, fanko24}@gmail.com)

Copyright ⓒ 2011 KIPS (ISSN 1976-913X)

Virus Detection Method based on Behavior Resource Tree

174

mented by calling APIs from specific DLLs, which demonstrates that these APIs are relatively
more important than APIs in other DLLs. Therefore, we can distinguish different APIs’ impact
on detection by finding the DLL to which it belongs. This is the reason that we introduce DLLs
into virus detection. Furthermore, earlier detection methods only took API calls as virus features.
In this paper, we consider both DLLs and APIs as resources called by programs instead and
draw behavior resource trees based on the resources called by the program and their calling rela-
tionship. By building connections between isolated resources, special block structures with sev-
eral resources can be constructed and defined as program behavior features to increase detection
rate accuracy.

This paper is organized as follows: Section 1 is the introduction and reviews the previous
work in the field and presents the paper’s main ideas. Section 2 illustrates the importance of
introducing DLLs into virus detection with virus key DLLs listed and then introduces how to
construct behavior resource trees. Section 3 presents the concept of key block structure and the
method of obtaining block structure; also included is the reason for considering it as a behavior
feature. Section 4 provides elaborations on the virus detection model based on the behavior re-
source tree, including the methods for calculating the Detection Value of block structures and of
entire trees, the detection rule is also listed. In section 5 our theory is verified by an experiment.
Section 6 concludes the paper.

2. PROGRAM BEHAVIOR RESOURCE TREE
2.1 Key Dynamic Link Library

In order to achieve specific aims such as propagation, destruction and hide, a virus must per-
form some behaviors that cause them to differ from benign programs [9]. Those behaviors can
be considered as virus features and the majority of them are implemented by calling APIs in an
operation system, which illustrates that the basic element of virus behavior is API calls. As APIs
are called from Dynamic Link Library (DLL) while different DLLs have relatively independent
function definition, APIs from different DLLs show significant difference in their functions. In
other words, program behaviors are divided into several function modules, each modules’ func-
tion is fulfilled by a group of DLLs. Virus, as a special kind of program, must has its own func-
tion modules which leads to a calling inclination to some group of DLLs compared to benign
program. Those virus-preferred DLLs tend to include more important API functions in virus
detection called key APIs. On the contrary, benign-program-preferred DLLs usually have fewer
key APIs. Therefore, a DLL can be considered as a kind of behavior feature and hence it is not
enough to monitor only API calls but also necessary to include DLLs into virus detection.

Virus behavior features consist of and can perform the following: infection, propagation, self-
protection, destruction of system function or user files, stealing sensitive information, unauthor-
ized system control and malice net resource occupation, etc. [10]. According to these behaviors,
we can search for DLLs that are included in corresponding function modules and utilize them as
key DLLs in virus detection. In order to increase detection efficiency, we only select those
DLLs with high frequency of being called and eliminate those of lower call frequency. Several
common key DLLs with their functions and importance levels are listed in Table 1.

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

175

2.2 Construction of Behavior Resource Tree

In current operation systems, programs need to request operation system to execute critical
operations. System provides many APIs in all kinds of DLLs for user application to interact with
it. Thus, by monitoring the program running process, we could get all the DLLs and APIs called
by the program as well as the calling relationships between DLLs and between DLLs and APIs.
Based on this information, program resources and their calling relations can be described as a
tree structure. In this paper, we call this a Behavior Resource Tree (BRT) as is shown in Fig. 1
below:

From this figure, we realize that all the resources called by a program, including DLLs and
APIs, altogether construct a tree structure. High layer DLLs can call DLLs in the lower layer,
but call relations are limited to adjacent layers, which means a DLL node’s direct child DLL

Table 1. Key DLLs with their functions and importance levels

DLL name Function Importance Level
kernel32.dll Memory management、I/O and interrupt 1
ntdll.dll API user mode terminal 1
version.dll NT system version check and file installation 2
advapi32.dll Object safety, registry operation and event log 3
shell32.dll Win 32 shell file, default setting of open web page and file 3
wsock32.dll, ws2_32.dll Windows Sockets API, internet application 2
wininet.dll HTTP browse、download 2
netapi32.dll Windows net API 2
netman.dll Network connect management 2
netrap.dll Remote network management protocol 3
rpcrt4.dll Remote procedure call protocol 4
iphlpapi.dll IP helper module 3
secur32.dll Microsoft security support provider interface 4
samlib.dll Microsoft security authority manager API library 4
wintrust.dll Microsoft trust verification APIs 4
ole32.dll, oleaut32.dll Object linking and embedding module 2
crypt32.dll Encryption API32 3
shlwapi.dll Shell light-weight utility library 2
powrprof.dll Power profile helper 4

Program

Layer 1 DLL

Layer 1 DLL

Layer 2 DLL

Layer 2 DLL

API sequence

API sequence

API sequence

Layer 3 DLL API sequenceAPI sequence

Layer 2 DLL API sequenceLayer 1 DLL

API sequence
Fig. 1. Diagram of Behavior Resource Tree

Virus Detection Method based on Behavior Resource Tree

176

nodes are located in the same layer. All the DLLs called by the program form the non-leaf nodes
and every DLL calls API sequences that compose the leaf nodes in the tree. In fact, the BRT
divides all of a program’s behavior into several structures that represent different function mod-
ules. Through the calling relationships between DLLs and APIs from higher layers to lower lay-
ers, these modules ultimately connect with a basic behavior realization element -API call se-
quence; thus the entire tree structure of a program is constructed.

3. VIRUS BEHAVIOR FEATURE SET
Most current virus behavior detection methods take API calls as program behavior features,

which, as is mentioned above, have many shortcomings. Due to this limitation, we extract spe-
cial parts from the BRT that are relatively more important in virus detection to serve as key
block structures. In this paper, such key block structures are considered program behavior fea-
tures. Compared to traditional behavior detection methods, there are several reasons to expand
the definition of program behavior features:

• Connect isolated resources to monitor programs’ behavior more precisely. Because not

only APIs are considered as behavior features but also DLLs are taken into consideration,
therefore all the resources a program calls construct a tree structure. Thus the monitor range
is expanded and the interrelation of resources is defined which means whether a resource
exists is not the only factor to consider. All the isolated resources are connected and located
in the BRT so that we can better understand the status of every resource in the whole struc-
ture and a program’s behavior can be divided into different function modules and moni-
tored separately.

• Differential treatment against APIs in different function modules. APIs are treated as equal
importance factors in current detection techniques. However, in this paper, taking block
structure as a behavior feature actually results in the differential treatment of APIs in dif-
ferent function modules. Every module has its own function and shows a significant differ-
ence in virus detection while all modules’ functions are implemented by APIs ultimately.
As a result, APIs in important modules and less important modules should not be treated
equally. Differential treatment is definitely more practical and more accurate.

• Increase detection efficiency. Compared to the whole BRT, one single block structure is
only a small part of it. Taking block structure as a behavior feature vector allows us to
avoid calculating the whole tree. Through eliminating redundant parts and extracting only
key parts, more pointed virus detection could be realized to increase detection efficiency.

In order to extract those relatively more important parts, that is, key block structures and

eliminate redundant parts, we first search in the BRT for key DLLs listed in the last section.
While a match is found, consider that DLL as a root node and the root node’s sub structure in
the BRT is a key block structure that we want. During the extraction procedure, a key DLL
might be found in several different places of one program and there are more or less some dif-
ferences among its sub structures. Therefore, the principles of block structure extraction are pro-
posed as follows:

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

177

Principle 1: While a DLL has two or more sub structures that have significant difference in
their structure, preference in key block structure selection is given to those sub structures whose
module function is most probably related with virus behavior or whose hierarchical structure is
more complex.

Principle 2: If there are several key DLLs being called in one selected block structure which
leads to a huge block size and a much-too complex hierarchical structure, extract non-root DLL
key nodes and their sub structure to construct other new key block structures and eliminate these
parts from the original selected block structure.

After key block structures are extracted from the BRT, we need to make some secondary

treatment against them based on statistics. Due to function difference, a key block structure may
have several different versions in different programs. These versions have very familiar struc-
tures and unapparent resource differences. In the secondary treatment, they are considered as
one key block structure because they perform the same function. Thus we need to select high
repetitive rate parts from them, that is, parts which appear in most versions and eliminate those
uncommon DLLs and APIs based on statistics through all block structures. At last, the final key
block structures are called Feature Block Structures and are stored in a Virus Behavior Feature
Database.

4. VIRUS DETECTION MODEL BASED ON THE BEHAVIOR RESOURCE TREE
In this paper, we introduce the concept of Detection Value (DV) into our virus detection

model. By assigning values to resources in the BRT, the DV of both block structure and the
whole tree can be evaluated. Then we set threshold value through calculation and statistics of all
kinds of programs. Compare DV of the testing program to the threshold values, we could get the
Whole Detection Rate (WDR). The detection includes three main procedures: calculating the
DV of a block structure, calculating the WDV of a BRT and detection rules.

4.1 Calculating DV of Block Structure

In order to calculate the DV of a block structure, we divide the whole block structure into sev-
eral sub structures from leaf layer to higher layers. Define the sub structure set as }{ iT .

}DADD;V;D;{=iT

},,{D 21 nddd …= represents DLL set, where id is a DLL in the structure and n is the num-

ber of all key DLLs. As is mentioned above, key DLLs show different importance in virus de-
tection because of their function and call frequency differences, which is why DLLs should not
be treated equally. In this paper, this differential treatment is realized by assigning different cal-
culating coefficients to DLLs. By building connections among resources of the program, the
DLL node actually brings additional information into detection. Therefore, for Ddk ∈∀ assign
calculating coefficients kP , 1>kP .

},,{V 1211 ijvvv …= is the set of all API nodes included in block structure pT , where ijv repre-
sents the j th child API node of DLL node id . In order to assign value to API nodes, we make
a statistics through all Feature Block Structures in the Virus Behavior Feature Database, count

Virus Detection Method based on Behavior Resource Tree

178

each of their API amounts n and for V∈∀ ijv , assign value nvW ij 1)(= .
})},{:(,}),,{:{(DD 1 fgnqp dddddd ………= indicates the call relations among DLLs in the

block structure, for example, }),,{:(1 qp ddd … means 1d is the parent node of qp dd ,,… . In
other words, this relation set includes all the edges whose two vertices are both DLL nodes.

}}),,{:(,}),,{:({DA 11111 nmnnj vvdvvd ………= is a set indicating the call relations between DLLs
and APIs, that is, pointing out which certain sets of APIs are called from which DLL, such as

nmn vv ,,1 … are child nodes of nd . Unlike DD, DA includes the rest of the edges in the structure
which has one DLL vertex and one API vertex. Thus this set actually indicates all the edges that
connect leaf nodes.

After the definition of block structures and value assignment of nodes, we search in the test-
ing program for Feature Block Structure. The search procedure first compares the testing pro-
gram with the Virus Behavior Feature Database to identify ‘similar’ block structures. In order to
fulfill this comparison, a Similarity Judgment rule is needed:

Similarity Judgment: The prerequisite of ‘similar’ is two block structure have the same root

DLL node. While the testing block structure has the same DLLs as the feature block structure
and the whole relationship among those DLLs is also the same, which means they have exactly
the same structure, we determine the two block structures are ‘Completely Similar’. If the struc-
ture is not completely the same, count the amount of its DLLs which appear in both the testing
structure and feature structure. If this amount accounts for more than C percent of its total DLL
number, we determine the two block structures are ‘Partially Similar’. The value of C is decided
by experiment result. Both of the two circumstances above are considered ‘similar’ in detection.

After getting the ‘similar’ testing block structure by Similarity Judgment rule, we still cannot
calculate the DV of original testing block structure. A match between testing block structure and
feature block structure in the database is needed to make a secondary treatment against testing
block structure. First, we search in the Feature Block Structure Database for a feature structure
which has the same root DLL node with testing block structure and call this feature block struc-
ture a Compare Block Structure. Then a traversal of the testing block structure is performed.
During the traversal, those nodes of the same name located in the same position of the testing
block structure and the corresponding compare block structure are allowed to remain in the
structure without a location change, while the rest of the nodes which fail to pass the matching
and are excluded from the testing structure. When the whole matching process is completed,
those parts contribute less to the detection are eliminated and the remaining parts show more
significant importance in virus detection. So the matching procedure increases detection accu-
racy and reduces computation complexity. After the matching, we call the altered testing block
structure a Calculable Block Structure.

For every calculable block structure, we first connect its leaf node and their direct parent node
as sub structures. Any sub structure can then be considered as a whole and becomes a new leaf
of higher layer. Based on this assumption, we could construct sub structures from lower layer to
higher layer. Lower layer sub structures are considered as special ‘nodes’ of higher layer sub
structures. Eventually, all these sub structures form one whole Calculable Block Structure. Ac-
cording to the assigned value of APIs and calculating coefficients of DLLs, we begin the calcu-
lations from leaf layer. The DV of a leaf sub structure constructed by APIs and their parent DLL
node can be calculated as:

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

179

 ∑
=

=
n

j
ijii vWPTW

1

)()((1)

)(ijvW is the value of leaf API node ijv , iP is the calculating coefficient of the parent DLL

node of those APIs. From the formula above, we can calculate the product of the sum of all leaf
API values and their parent DLL calculating coefficients as the DV of the leaf sub block struc-
ture. Because all nodes are connected directly or indirectly with each other by edges in the struc-
ture, it is insufficient to consider every node as an isolated element and accumulate all the
nodes’ values to be the DV of the block structure. Meanwhile, every edge connects a parent
node and its child node, that is to say, there are no two nodes in the same layer that can become
an edge’s two vertices. Therefore, by multiplying the calculating coefficient iP , it can be re-
vealed that the relationships among nodes in the structure actually produce extra information for
detection and we could also take iP as an extra contribution of introducing the concept of edge
in virus detection.

The leaf sub block structure can be considered an integrated leaf ‘node’ of the higher node
with a known DV. Then we can reuse the algorithm above to calculate the DV of the higher
layer sub block structure. Through calculating the DV of nested sub block structures from lower
layers to higher layers, we get the total DV of the calculable block structure:

))()(()(
11
∑∑
==

+=
m

j
nj

k

i
inn vWTWPTW (2)

It is to be noted that nearly all DLLs have two kinds of child nodes: API nodes and DLL

nodes except for leaf layer DLLs. For those leaf sub block structures whose root nodes are leaf
layer DLLs, we can calculate their DV with formula (1). Formula (2) calculates other block
structures’ DVs where both the value of child APIs and DV of its sub structures should be added
up then multiply that root DLL’s calculating coefficient to get this sub block structure’s result.
Using that result in the calculation of higher layer sub block structures, finally we could get the
result of the highest layer-that is the DV of that whole calculable block structure.

4.2 Calculating WDV of the BRT

In this paper, a program’s behavior is represented by several feature block structures. Thus, in
order to calculate the WDV of the BRT, all the program’s testing block structures should be
calculated altogether with an algorithm. In Section 4.1, we can get a single block structure’s DV.
Since the DV of different block structures have no comparability with each other, we need to
compare the DV of the testing block structure to the DV of its corresponding feature block struc-
ture to get a proportion before calculating the total DV of the BRT. This proportion indicates a
testing block structure’s probability of exhibiting virus behavior and is called Detection Rate
(DR).

After calculating the testing block structure’s DV)(iTW and its corresponding feature block
structure’s DV)(i0 TW ,)(iTW divided by)(i0 TW is the testing block structure’s DR iL :

)(
)(

i0

i
i TW

TWL = (3)

Virus Detection Method based on Behavior Resource Tree

180

As a behavior feature, different block structures apparently show significant different impor-
tance in virus detection. So we need to assign a Block Structure Coefficient (BSC) iq (10 << iq)
to every feature block structure based on statistics of their criticality and frequency of occur-
rence in viruses. The BSC of a block structure actually reflects its percentage in the calculation
of total DV.

Adding up all the product of DR iL and BSC iq , we get the total detection rate. Then we
calculate the total Threshold Detection Rate (TDR) by multiplying TDR i-maxL and BSC iq .
The quotient obtained by dividing the total detection rate by the total threshold detection rate is
the Whole Detection Rate kR of the testing BRT:

∑

∑

=

== n

i
i-maxi

n

i
ii

k

Lq

Lq
R

1

1 (4)

4.3 Virus Detection Rules

The virus detection method in this paper is based on a program’s BRT. Detection rules in-
clude searching for possible virus-specific structures in the BRT, judging by the DV of all block
structures and judging by the WDR of the BRT. According their order of application, the detec-
tion rules are defined as follows:

Detection Rule 1: Search in the program’s BRT to find whether there is one or more special

structures which can be called virus-specific structure that only exist in virus program while
benign program does not have. The form of expression of this kind of structure is certain re-
sources with special connection among themselves.

The method of deciding whether there are virus-specific structures in a BRT is by comparing
the testing structure to a virus-specific structure. Because this structure is still a part of the block
structure, the Similarity Judgment process can also be used on it. If the two structures satisfy the
‘Completely Similar’ condition and more than 90 percent of their APIs are the same, we define
the testing structure as a virus-specific structure. Any program that has one or more virus-
specific structures is judged to be a virus and there is no need to calculate the DV of its block
structure or WDR of the BRT. If there is no virus-specific structure in the program, we turn to
Detection Rule 2.

Detection Rule 2: Based on the algorithm mentioned above, calculate DV of every testing
block structure of the program and obtain its DR iL . It is necessary to set a Threshold Detection
Rate (TDR) i-maxL for every block structure in the Virus Behavior Feature Database which is
determined through statistics based upon a large amount of benign program and virus samples.
Compare iL with the feature block structure’s Threshold Detection Rate i-maxL , if there is one
or more structures’ DRs which are bigger than their corresponding TDR, the program is judged
to be a virus. If all the DRs of testing block structures are smaller than their TDR, we turn to
Detection Rule 3. It can also be expressed as:

i-maxini LLLLLL >∈∃ },,,,{ 21 … , the testing program is judged to be a virus
maxiini LLLLLL −<∈∀ },,,,{ 11 … , turn to Detection Rule 3

Detection Rule 3: If Detection Rules 1and 2 cannot find out whether the testing program is a

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

181

virus or not, we need to approach the detection from the perspective of the whole BRT. For this
reason, all the DRs of testing block structures should be calculated altogether to get the WDR
and the last detection rule is based on it. After testing a large number of sample programs’
WDRs, we will obtain optimal Threshold Whole Detection Rate (TWDR) maxR that serves to
separate benign programs and viruses through statistics. If the WDR of a testing program is
greater or equal to TWDR, the program is judged to be a virus, otherwise it is judged to be a
benign program. That is to say:

If maxk RR ≥ , testing program is judged to be a virus
If maxk RR < , testing program is judged to be a benign program

5. EXPERIMENT
Based on the idea proposed above, an experiment was performed for verification. First, we

used Dependency Walker to analyze all the virus samples collected and to get their BRTs. From
these BRTs, all of their DLL resources are stored and sorted by frequency of occurrence. Re-
garding those most commonly occurring DLLs as root nodes, we start to find corresponding
feature block structures from virus samples. After searching among large amounts of virus BRTs
and making comparisons among obtained structures, virus behavior feature block structures with
high frequency of occurrence were selected and dominated by their root DLL nodes’ names.

Since a feature block structure can be seen in many different programs with similar overall

SECUR32

NETAPI32

KERNEL32

NTDLL

NTDLL

NTDSDAPI

DsGetDcNameW

DsGetDcNameWithAccountW

NetApiBufferFree
… … … … … …

DisableThreadLibraryCalls

GetLocaleInfoW

TerminateProcess
… … … … … …

RtlGetLastWin32Error

RtlSetLastWin32Error

NtDuplicateObject

RtlAcquireResourceShared

RtlDeleteCriticalSection
… … … … … …

DsBindW

ADVAPI32

DsCrackNamesW

DsUnBindW

RegOpenKeyExW

… … … … … …

RegSetValueExW

RegDeleteKeyW
… … … … … …

Fig. 2. SECUR32 Block Structure

Virus Detection Method based on Behavior Resource Tree

182

structure but with differences in detail, we call them different versions of one feature block
structure. As a result, there are overlapping parts in distinct versions. Feature block structure is
determined by selecting the most representative overlapping part from numerous versions.
Moreover, with an increase in layers and calling resources, it is much harder to find overlapping
parts from different programs. Therefore in this paper we tried to control the feature block struc-
ture to be less than five layers to increase detection efficiency and accuracy. Two feature block
structures constructed by experiment are shown below:

Subject to space limitations, the block structures above are only a small part of the whole fea-
ture block structures and API leaf nodes cannot be completely displayed. In the experiment, we
find out that the relation among DLLs in block structures of different programs is similar. That
is, the overlapping rate of DLLs is relatively high while the major difference between programs
lies in API calls. In order to get more accurate results, the API calls we chose to be in the block
structure all existed in more than 50% of the sample programs.

All the selected feature block structures are then used to construct a Virus Behavior Feature
Database. Every feature block structure needs to be assigned a calculating coefficient which is
determined based on its function and occurrence frequency. After the procedure of search and
selection, we obtain 57 feature block structures altogether. Table 2. lists the top 10 most com-
monly seen block structures along with their calculating coefficients.

In order to test our theory, this paper selects virus: Trojan-Downloader.Win32.EDog for veri-
fication. First we analyzed this executable program to get its BRT. According to Detection Rule
1, we search the tree to examine if there are any virus-specific structures. Due to the rarity of
virus-specific structures, there were no matches in this virus. Therefore, we turned to Detection

ADVAPI32

RPCRT4

KERNEL32

NTDLL

NTDLL

SECUR32

RpcBindingFree

RpcBindingSetAuthInfoA

RpcSsDestroyClientContext
… … … … … …

DeleteCriticalSection

EnterCriticalSection

GetProcAddress
… … … … … …

RtlDeleteCriticalSection

RtlEnterCriticalSection

RtlLeaveCriticalSection
… … … … … …

NtAccessCheck

NtConnectPort

NtSecureConnectPort
… … … … … …

WINTRUST

LsaConnectUntrusted

LsaLogonUser

LsaDeregisterLogonProcess

WinVerifyTrust

… … … … … …
Fig. 3. ADVAPI32 Block Structure

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

183

Rule 2 and search the BRT to find block structures which were similar to feature block struc-
tures.

Based on Similarity Judgment, those ‘Completely Similar’ block structures and ‘Partially
Similar’ ones whose parameters %80>C were selected for further matching against feature
block structure in the database. After eliminating the redundant parts, we obtained 12 calculable
block structures 1T ~ 12T : ADVAPI32, RPCRT4, SAMLIB, WINTRUST, SECUR32, SHELL32,
POWRPROF, WS2_32, DNSAPI, IPHLPAPI, NETRAP, NETAPI32. The algorithm proposed
in Section 5.1 was used to calculate every block structure’s DV)(iTW and its corresponding
feature block structure’s DV)(i0 TW . Then we determined the detection rates iL of all calcula-
ble block structures.

In this table, i-maxL is Threshold Detection Rate of a block structure. Its value is determined
by calculating a block structure’s DR of a virus and benign program and choosing the optimal
one to distinguish between benign program and virus. In the experiment, we found that as there
was an increase in layer number and the complication of structure, the calculated DV was bigger
and the detection rate was lower. The reason is that as the structure became more complex, there
were more DLL, API calls and function modules. So there were more differences between the
testing block structure and feature block structure which lead to the decrease in detection rate.
Furthermore, the detection rate of virus block structures which included more key function
modules such as RPCRT4, SAMLIB were relatively higher than the other ones which included
more non-key function modules. This phenomenon verifies the rationality of dividing program
behavior into function modules.

As is shown in Table 3, there was no block structure’s DR exceeding the threshold value.
Thus we turned to Detection Rule 3 to calculate the WDR kR :

71.0
721.5
0874

12

1

12

1 ≈==

∑

∑

=

= .

Ld

Ld
R

i
i-maxi

i
ii

k

By calculating the WDR of large amounts of benign programs and viruses, we found that the

WDR of benign programs are typically lower than viruses. Statistics demonstrate that the WDR
s of benign programs are often lower than 0.7 while the WDR of viruses are usually higher than
0.7. As a result, we set the threshold whole detection rate at 7.0=maxR . Because maxk RR ≥ , that
testing program is judged to be a virus which proves the validity of the virus detection method
based on the BRT as we proposed.

Table 2. Behavior Feature Block Structure Database

Block Structure Calculating Coefficient Block Structure Calculating Coefficient
SECUR32 0.8 POWRPROF 0.6

WINTRUST 0.8 DNSAPI 0.3
RPCRT4 0.8 NTDSAPI 0.4
SAMLIB 0.7 WS2_32 0.4

ADVAPI32 0.7 NETAPI32 0.3

Virus Detection Method based on Behavior Resource Tree

184

6. SUMMARY AND FURTHER RESEARCH

Due to the disadvantages of current virus detection methods, this paper proposed a new virus
behavior detection method based on a program behavior resource tree. Current detection meth-
ods usually take APIs as a program behavior feature and all APIs are considered to have equal
importance. However, this paper introduced DLLs into virus detection and divides program be-
havior into several function modules. Moreover, the paper constructed behavior resource trees
reflecting the connections among DLL and API resources. Then critical parts were selected from
the tree to form block structures which were considered to be new behavior feature vectors.
Based on this, the paper advanced an algorithm to calculate the detection value of single block
structures and of whole programs. Three detection rules were defined to accomplish the detec-
tion process from the parts to the whole. Ultimately, an experiment was performed to verify that
the paper’s ideas provide a reasonable solution for virus detection.

In future work, we hope to determine feature block structures and virus-specific structures in
formal methods. We also plan to develop a dynamic detection system monitoring program
which responds to virus threats with greater speed.

REFERENCES
[1] Jeffrey O. Kephart and William C. Arnold, “Automatic Extraction of Computer Virus Signatures,”

4th Virus Bulletin International Conference, Jersey, USA, 1994, pp.178-184.
[2] Matthew G. Schultz, Eleazar Eskin, Erez Zadok and Salvatore J. Stolfo, “Data Mining Methods for

Detection of New Malicious Executables,” IEEE Symposium on security and privacy, 2001, pp.38-49.
[3] Jeremy Z. Kolter and Marcus A. Maloof, “Learning to Detect Malicious Executables in the Wild,”

Proceedings of the tenth ACM SIGKDD international conference, 2004, pp.2721-2744.
[4] David Wagner and Drew Dean, “Intrusion Detection via Static Analysis,” Proceedings of the IEEE

Symposium on Security and Privacy, 2001, pp.156-168.

Table 3. DV and DR of Block Structure

iT Name id)(iTW)(i0 TW
iL

maxiL −

1T ADVAPI32 0.7 4.11 5.78 0.71 0.82

2T RPCRT4 0.8 3.44 4.98 0.69 0.89

3T SAMLIB 0.7 1.77 2.26 0.78 0.93

4T WINTRUST 0.8 5.51 8.05 0.68 0.81

5T SECUR32 0.8 8.92 16.71 0.53 0.78

6T SHELL32 0.6 9.11 22.34 0.41 0.68

7T POWRPROF 0.6 5.06 6.86 0.73 0.85

8T WS2_32 0.4 2.14 4.77 0.45 0.84

9T DNSAPI 0.3 5.26 8.53 0.61 0.80

10T IPHLPAPI, 0.3 9.67 19.13 0.51 0.69

11T NETRAP 0.2 0.91 1.17 0.78 0.86

12T NETAPI32 0.3 6.24 11.21 0.56 0.77

Mengsong Zou, Lansheng Han, Ming Liu and Qiwen Liu

185

[5] J-Y. Xu, A. H. Sung, P. Chavez and S. Mukkamala, “Polymorphic Malicious Executable Scanner by
API Sequence Analysis,” Proceedings of the Fourth International Conference on Hybrid Intelligent
Systems, 2004, pp.378-383.

[6] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie and N. TawbiStatic, “Detection of
Malicious Code in Executable Programs,” Int. J. of Req. Eng., 2001, pp.45-48.

[7] XU Ming, CHEN Chun and YING Jing, “Anomaly Detection Based on System Call Classification,”
Journal of Software, Vol.15, No.3, 2004, pp.391-403.

[8] Elizabeth Stinson and John C. Mitchell, “Characterizing Bots’ Remote Control Behavior. In Detec-
tion of Intrusions & Malware, and Vulnerability Assessment,” 2007, pp.89-108.

[9] Essam Al Daoud, Iqbal H. Jebril and Belal Zaqaibeh, “Computer Virus Strategies and Detection
Methods,” Int. J. Open Problems Compt. Math., Vol.1, No.2, 2008, pp.12-20.

[10] F. Cohen, “Computer viruses:: Theory and experiments,” Computers & security, Vol.6, 1987, pp.22-
33.

Mengsong Zou
He received his BS degrees in the Dept. of Computer Sci. & Tech. from
Huazhong University of Science and Technology in 2008. And now he is under-
taking a master’s course as a member of the Information Security lab at
Huazhong Univ. of Sci. and Tech. His research interests include Virus detection,
Net-virus propagation models and information security.

Lansheng Han
He received a Ph.D. degree in Information Security (2003-2006) from the Dept.
of Computer Science & Technology, Huazhong University of Science and Tech-
nology. Now he is working as an Associate Professor at the School of Computer
Science of HUST. His research interests include Information Security, Spreading
Models of Viruses, Connection Models and Access Control.

Ming Liu
He received a Ph.D. degree in Information Security from the Dept. of Computer
Science & Technology, Huazhong University of Science and Technology. Now
he is working at the School of Computer Science of HUST. His research inter-
ests include Information Security, Network Security and Computer Viruses.

Virus Detection Method based on Behavior Resource Tree

186

Qiwen Liu
He received his BS degrees from the Dept. of Traffic Science and Engineering at
Huazhong University of Science and Technology in 2008. Now he is undertaking
a master’s course as a member of the Information Security lab at Huazhong Univ.
of Sci. and Tech. His research interests include Computer viruses, Net-virus
propagation models and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

