DOI QR코드

DOI QR Code

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model

확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정

  • 김주철 (한국수자원공사 K-water 연구원) ;
  • 최용준 (한국수자원공사 K-water 연구원)
  • Received : 2011.05.09
  • Accepted : 2011.08.29
  • Published : 2011.12.31

Abstract

In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

본 연구에서는 유역의 배수구조를 지표면과 하천으로 구분하여 확산-유추 지형학적 순간단위도의 최적 매개변수를 산정하였다. 모형의 매개변수는 지표면과 하천 각각의 유속($u_c$, $u_h$) 및 확산계수($D_c$, $D_h$)로 구성하였다. 대상유역은 보청천 유역의 탄부 소유역을 선정하였으며, 대상유역의 하천망은 Strahler 차수법칙에 의해 4차 하천으로 분류되었다. 최적화 기법은 SCE-UA을 적용하였으며, 추정된 최적 매개변수는 다음과 같다; $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. 추정된 매개변수의 검증결과 평균 첨두유량 오차는 약 11 %, 첨두시간 오차는 0.3 hr로 양호하게 나타났다. 또한 매개변수들의 변동성을 살펴본 결과 하천확산계수($D_c$)는 수문응답함수에 큰 영향을 미치지 못함을 알 수 있었으며, 향후에는 이러한 결과들을 고려함으로서 모형을 좀 더 간편화할 수 있을 것으로 기대된다.

Keywords

References

  1. 강민구, 박승우, "저수지 최적 운영 모형을 이용한 추가 용수 공급 능력 평가", 한국수자원학회논문집, 제38권, 제11호, pp. 937-946, 2005.
  2. 이도훈, "LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정", 한국수자원학회 논문집, 제39권, 제8호, pp. 677-690, 2006.
  3. 최용준, 김주철, 황만하, "지형학적 분산을 고려한 특성유속이 순간단위도 형상에 미치는 영향", 한국수자원학회논문집, 제43권, 제4호, pp. 399-408, 2010.
  4. Botter, G. and Rinaldo, A., "Scale effect on geomorphologic and kinematic dispersion", Water Resources Research, Vol. 39, No. 10, 1286. doi:10.1029/2003WR002154, 2003.
  5. D'odorico, P., and Rigon, R., "Hillslope and channel contributions to the hydrologic response", Water Resources Research, Vol. 39, NO. 5, 1113. doi:10.1029/2002WR001708, 2003.
  6. Duan, Q., Sorooshian, S., and Gupta, V. K., "Effective and efficient global optimization for conceptual rainfall-runoff models", Water Resources Research, Vol. 284, 1015-1031, 1992.
  7. Eckhardt K., and Arnold J., "Automatic calibration of a distributed catchment model", Journal of Hydrology, Vol. 251, pp. 103-109, 2001. https://doi.org/10.1016/S0022-1694(01)00429-2
  8. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brools, N.H., Mixing in Inland and Coastal Waters, Academic Press, 1979.
  9. Gupta, V.K., Waymire, E., and Wang, C.T., "A representation of an instantaneous unit hydrograph from geomorphology", Water Resources Research, Vol. 16, No. 5, pp. 855-862, 1980. https://doi.org/10.1029/WR016i005p00855
  10. Henderson, F. M., Open Channel Flow, Macmillan, New York, 1996.
  11. Paik, K., and Kumar, P., "Hydraulic geometry and the nonlinearity of the network instantaneous response", Water Resources Research, Vol. 40, W03602, doi:10.1029/2003WR002821, 2004
  12. Rodriguez-Iturbe, I., and Valdes, J. B., "The geomorphologic structure of hydrologic response", Water Resources Research, Vol. 15, No. 6, pp. 1409-1420, 1979. https://doi.org/10.1029/WR015i006p01409
  13. Rinaldo, A., Rigon, R., and Marani, M., "Geomorphological dispersion", Water Resources Research, Vol. 27, No. 4, pp. 513-525, 1991. https://doi.org/10.1029/90WR02501
  14. Saco, P.M., and Kumar, P., "Kinematic dispersion in stream networks -1.Coupling hydraulics and network geometry", Water Resources Research, Vol. 38, No. 11, pp. 26-1-26-14, 2002.
  15. Strahler, A. N., "Quantitative analysis of watershed geomorphology", American Geophysical Union Transactions, Vol. 38, No. 6, pp. 913-920, 1957. https://doi.org/10.1029/TR038i006p00913
  16. van der Tak, L.D., and Bras, R.L., "Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph", Water Resources Research, Vol. 26, No. 10, pp. 2393-2400, 1990. https://doi.org/10.1029/WR026i010p02393