DOI QR코드

DOI QR Code

Biological Activity of Ethanol Extracts from Amelanchier asiatica Fruits

채진목(Amelanchier asiatica) 열매 에탄올 추출물의 생리활성

  • Chae, Jung-Woo (Gyeonggi-do Forest Environment Research Institute) ;
  • Kim, Jin-Sung (School of Food Science, Kyungpook National University) ;
  • Jo, Bun-Sung (School of Food Science, Kyungpook National University) ;
  • Kang, Sun-Ae (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Hye-Jin (School of Applied Biosciences, Kyungpook National University) ;
  • Joo, Sung-Hyun (Department of Forestry, Kyungpook University) ;
  • Chun, Sung-Sook (School of Food Science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Cho, Young-Je (School of Food Science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University)
  • 채정우 (경기도산림환경연구소) ;
  • 김진성 (경북대학교 식품과학부) ;
  • 조분성 (경북대학교 식품과학부) ;
  • 강선애 (경북대학교 응용생명과학부) ;
  • 박혜진 (경북대학교 응용생명과학부) ;
  • 주성현 (경북대학교 임학과) ;
  • 천성숙 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소)
  • Received : 2011.08.05
  • Accepted : 2011.10.04
  • Published : 2011.12.31

Abstract

Amelanchier asiatica fruits have been used as a traditional medical food. This research was investigated to assess angiotensin converting enzyme, xanthine oxidase (XOase) and elastase inhibitory activity and antioxidant activities. The content of total phenolic compounds in A. asiatica fruits extracts was 17.6mg/mL. In extracts, the electron donating ability by 1,1-diphenyl-2-picrylhydrazyl free radical scavenging test of A. asiatica fruits extracts was 90.18% at $200{\mu}g/mL$. The 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid radical decolorization of A. asiatica fruits extracts was 98.81% at $200{\mu}g/mL$. The inhibition rate of the antioxidant protection factor was 1.03, and thiobarbituric acid reactive substance was 73.27% at $200{\mu}g/mL$. The XOase inhibition activity of A. asiatica fruits extracts of showed to be 13.19% at $200{\mu}g/mL$. The angiotensin converting enzyme activity was significantly inhibited by A. asiatica fruits extracts as 82.52% inhibitory rate at $200{\mu}g/mL$. Elastase inhibitory activity in the A. asiatica fruits extracts (41.48% at $200{\mu}g/mL$) was higher than vitamin C (12.8% at $200{\mu}g/mL$). These results suggests that A. asiatica fruits extracts have the greatest property as a functional food and functional cosmetic source.

본 연구에서는 채진목(Amelanchier asiatica)의 항산화 활성과 xanthine oxidase, angiotensin converting enzyme 그리고 elastase 저해활성 등의 생리활성 효과를 조사해 보았다. 채진목 열매추출물에는 17.6 mg/g의 페놀성 물질이 함유되어 있으며, 추출물의 항산화 활성 실험에서 전자공여능은 채진목 열매 추출물을 $50{\mu}g/mL$ 이상으로 처리했을 때, 50% 이상의 효과를 보였으며, $200{\mu}g/mL$ 이상 처리 하였을 때는 90% 이상의 전자공여능을 보였다. 또한 ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid] radical cation decolorization 측정과 thiobarbituric acid reaction substance 측정에서도 각각 $200{\mu}g/mL$ 이상 처리하였을 때, 98%와 73%의 우수한 항산화력을 보였으며, antioxidant protection factor 측정에서는 1.03 PF의 효과를 보였다. XOase 저해활성 측정에서는 $200{\mu}g/mL$이상 처리하였을 때, 15% 이상의 저해활성을 나타냈으며, ACE 저해 활성에서는 $150{\mu}g/mL$에서 50% 이상, $200{\mu}g/mL$에서 82% 이상의 우수한 저해활성을 확인할 수 있었다. Elastase 저해활성에서는 50, 100, 150, $200{\mu}g/mL$첨가 시 각각 3.9, 18.8, 32.1, 41.3%의 저해율을 보여 농도가 증가함에 따라 그 효과 또한 증가함을 알 수 있었다. 또한 대조구인 Vit C가 $200{\mu}g/mL$ 첨가 시 12.6%의 낮은 저해율을 보여 상대적으로 그 효과의 우수함을 알 수 있었다. 본 연구의 결과로 채진목의 항산화 활성 및 통풍과 고혈압, 주름개선에 도움을 줄 수 있는 기능성 식품 및 기능성 화장품의 개발 가능성이 확인되었으며, 안전한 천연 기능성소재로서의 활용을 기대 할 수 있게 하였다.

Keywords

References

  1. An BJ and Lee JT (2002) Studies on biological activity from extract of Crataegi fructus. Korean J Herbology 17, 29-33.
  2. Andarwulan N and Shetty K (1999) Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium transformed roots of anise (Pimpinella anisum L.). J Agric Food Chem 47, 1776-1780. https://doi.org/10.1021/jf981214r
  3. Aoshima H, Tsunoue H, Koda H, and Kiso Y (2004) Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J Agric Food Chem 52, 5240-5244. https://doi.org/10.1021/jf049817s
  4. Blois MS (1958) Antioxidant determination by the use of stable free radical. Nature 26, 1198-1199.
  5. Buege JA and Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 105, 302-310.
  6. Cannell RJP, Kellan SJ, Owsianks AM, and Walker JM (1988) Results of a large scale scrren of microalgae for the production of protease inhibitors. Planta Med 54, 10-14. https://doi.org/10.1055/s-2006-962319
  7. Cheon SJ, Jang MJ, Jang YA, Choi EY, Jun DH, Kim YH, Cho WA, Jeong YS, Kwon HB, Kim TH, Choi KI, Do JR, Lee CE, and Lee JT (2008) Anti-wrinkle effect of cambodian Phellinus linteus extracts. J Life Sci 18, 1718-1722. https://doi.org/10.5352/JLS.2008.18.12.1718
  8. Cho EK and Cho YJ (2010) Physiological activities of hot water extracts from Ecklonia cava Kjellma. J Life Sci 20, 1675-1682. https://doi.org/10.5352/JLS.2010.20.11.1675
  9. Cho YJ, Chun SS, Kwon HJ, Yoon SJ, and Lee KH (2005) Comparison of physiological activities between hot-water and ethanol extracts of bokbunja (Rubus coreanum F.). J Korean Soc Food Sci Nutr 34, 790-796. https://doi.org/10.3746/jkfn.2005.34.6.790
  10. Cushman DW and Ondetti MA (1980) Inhibitors of angiotensin converting enzyme for treatment of hypertension. Biochem Pharmacol 29, 1871-1877. https://doi.org/10.1016/0006-2952(80)90096-9
  11. Dumont S, Cattuzzato L, Trouve G, Chevrot N, and Stoltz C (2010) Two new lipoaminoacids with complementary modes of action: new prospects to fight out against skin aging. Int J Cosmet Sci 32, 9-27. https://doi.org/10.1111/j.1468-2494.2009.00525.x
  12. Folin O and Denis W (1912) On phosphotungastic-phosphomolybetic compounds as color reagents. J Biol Chem 12, 239-249
  13. Imokawa G (2008) Recent advances in characterizing biological mechanisms underlying UV-induced wrinkles: A pivotal role of fibrobrast-derived elastase. Arch Dermatol Res 300, 7-20. https://doi.org/10.1007/s00403-007-0798-x
  14. Irwin BY and Pearl A (1946) Reactions of vaillin and it sderived compounds. The Caustic fusion of vaillin. J Am Chem Soc 68, 2180-2184. https://doi.org/10.1021/ja01215a021
  15. Jung MS, Lee GS, and Chae HJ (2004) In vitro biological activity assay of ethanol extract of Radish. J Korean Soc Appl Biol Chem 47, 67-71.
  16. Kang JM, Cha IH, Lee YK, and Ryu HS (1997) Identification of valatile essential oil, and flavor characterization an antimicrobial effect of fractions from Houttuynia cordata thunb. J Korean Soc Food Sci Nutr 26, 209-213.
  17. Kim EJ, Kim MK, Jin XJ, Oh JH, Kim JE, and Chung JH (2010) Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin. J Korean Med Sci 25, 980-983. https://doi.org/10.3346/jkms.2010.25.6.980
  18. Kim HK, Kim YE, Do JR, Lee YC, and Lee BY (1995) Antioxidative activity and physiological activity of some Korean medicinal plants. Korran J Food Sci Technol 27, 80-85.
  19. Kim SY, Kim JH, Ki SK, Oh MJ, and Jung MY (1994) Antioxidant activities of selected oriental herb extracts. J Am Oil Chem Soc 71, 633-640. https://doi.org/10.1007/BF02540592
  20. Lee DH, Kim JH, Kim NM, Park JS, and Lee JS (2002) Manufacture and physiological functionality of Korean traditional liquor by using Paecilomyese japonica. Korean J Mycal 30, 41-146.
  21. Lee YS, Choi BD, Joo EY, Shin SR, and Kim NW (2009) Antioxidative activities and tyrosinase inhibition ability in various extracts of the Vitex rotundifolia seed. Korean J Food Preserv 16, 101-110.
  22. Makrantonaki E and Zouboulis CC (2007) Molecular mechanisms of skin aging: State of the art. Ann NY Acad Sci 1119, 40-50. https://doi.org/10.1196/annals.1404.027
  23. Min DR, Park SY, and Chin KB (2010) Evaluation of antioxidative antimicrobial activier of gatlic stem and red cabbage, and their application to pork patties during refrigerated storage. Korean J Food Sci Ani Resour 30, 291-297. https://doi.org/10.5851/kosfa.2010.30.2.291
  24. Moon JS, Kim SJ, Park YM, Hwang IS, and Kim EH (2004) Antimicrobial effect of methanol extracts from some medicinal herbs and the content of phenolic compounds. Korean J Food Pre 11, 207-213.
  25. Ong TM, Whong WZ, Stewatr S, and Brockman HE (1986) Chlorophyllin; a potent antimutagen against enviromental and dietary complex mixture. Mutat Res 173, 111-115. https://doi.org/10.1016/0165-7992(86)90086-2
  26. Park BJ, Suk HS, Chung GS, and Sohn JK (1987) Studies on protoplast culture and fusion in cruciferae. Korean J Breed 19, 223-234.
  27. Pellegrin N, Re R, Yang M, and Rice-Evans C (1998) Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activites applying 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299, 379-389.
  28. Sharman S, Jill DS, Kelloff GJ, and Vernon ES (1994) Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res 54, 5848-5855.
  29. Stirpe F and Della Corte E (1969) The regluation of rat liver xanthine oxidase. J Biol Chem 244, 3855-3863.
  30. Storch J and Feber E (1988) Detergent-amplified chemilum-inescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal Biochem 169, 262-267. https://doi.org/10.1016/0003-2697(88)90283-7
  31. Tanaka K, Hasegawa J, Asamitsu K, and Okamoto T (2005) Prevention of the ultraviolet B-mediated skin photoaging by a nuclear factor kappa B inhibitor, parthenolide. J Pharmacol Exp Ther 315, 624-630. https://doi.org/10.1124/jpet.105.088674
  32. Yoo JH, Cha JY, Jeong YK. Chung KT, and Cho YS (2004) Antioxidative effects of pine (Pinus densflora) nee-dle extract. J Life Sci 14, 863-867. https://doi.org/10.5352/JLS.2004.14.5.863
  33. Zielinski H and Kozlowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48, 2008-2016. https://doi.org/10.1021/jf990619o

Cited by

  1. Antioxidative Activity of Extracts from Sambucus williamsii var. coreana vol.25, pp.4, 2012, https://doi.org/10.7732/kjpr.2012.25.4.363
  2. Antioxidant and Alcohol Degradation Activities of Extracts from Acer tegmentosum Maxim. vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.378
  3. Acaricidal activities of bicyclic monoterpene ketones from Artemisia iwayomogi against Dermatophagoides spp. vol.62, pp.3, 2014, https://doi.org/10.1007/s10493-013-9739-x
  4. Evaluation of the acaricidal toxicities of camphor and its structural analogues against house dust mites by the impregnated fabric disc method vol.70, pp.7, 2014, https://doi.org/10.1002/ps.3769
  5. 동송근(Pinus densiflora root) 추출물의 기능성식품 활성 vol.23, pp.1, 2011, https://doi.org/10.11002/kjfp.2016.23.1.110
  6. 채진목 에탄올 추출물의 항염증 효과 검증 vol.43, pp.1, 2011, https://doi.org/10.15230/scsk.2017.43.1.19
  7. In Vitro Screening of East Asian Plant Extracts for Potential Use in Reducing Ruminal Methane Production vol.11, pp.4, 2021, https://doi.org/10.3390/ani11041020
  8. Antibacterial properties in-vitro of Mexican serviceberry extracts against dental biofilm species vol.11, pp.3, 2011, https://doi.org/10.3233/jbr-210718