DOI QR코드

DOI QR Code

Inhibition of Low Density Lipoprotein-oxidation, ACAT-1, and ACAT-2 by Lignans from the Bark of Machilus thunbergii

  • Shrestha, Sabina (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Park, Ji-Hae (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Lee, Dae-Young (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Cho, Jin-Gyeong (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Lee, Do-Gyeong (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Cho, Moon-Hee (Korea Research Institute of Bioscience & Biotechnology) ;
  • Jeong, Tae-Sook (Korea Research Institute of Bioscience & Biotechnology) ;
  • Kang, Hee-Cheol (R&D Center, Green Flower Cosmetics Co.) ;
  • Baek, Nam-In (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University)
  • Received : 2011.01.22
  • Accepted : 2011.03.07
  • Published : 2011.03.31

Abstract

The bark of Machilus thunbergii was extracted with 80% aqueous methanol (MeOH), and the concentrated extract was partitioned using ethyl acetate (EtOAc), butanol (n-BuOH), and $H_2O$, successively. From the EtOAc fraction, five lignans were isolated through the repeated silica gel, octadecyl silica gel (ODS) and, Sephadex LH-20 column chromatography. Based on nuclear magnetic resonance (NMR), mass spectroscopy (MS), and infrared spectroscopy (IR) spectroscopic data, the chemical structures of the compounds were determined to be machilin A (1), machilin F (2), licarin A (3), nectandrin A (4), and nectandrin B, (5). This study presents comparative account of five lignans from M. thunbergii bark contributing inhibition of low density lipoprotein (LDL), ACAT-1, and ACAT-2. Compounds 2-5 showed varied degree of antioxidant activity on LDL with $IC_{50}$ values of 2.1, 11.8, 15.3, and $4.1{\mu}M$. Compounds 1, 2, and 3 showed inhibition activity on ACAT-1 with values $63.4{\pm}6.9%$ ($IC_{50}=66.8{\mu}M$), $53.7{\pm}0.9%$ ($IC_{50}=109.2{\mu}M$), and $78.7{\pm}0.2%$ ($IC_{50}=40.6{\mu}M$), respectively, at a concentration of 50 mg/mL, and on ACAT-2 with values $47.3{\pm}1.5%$ ($IC_{50}=149.7{\mu}M$), $39.2{\pm}0.2%$ ($IC_{50}=165.2{\mu}M$), and $52.1{\pm}1.0%$ ($IC_{50}=131.0{\mu}M$, respectively, at a concentration of 50 mg/mL.

Keywords

References

  1. Ahn BT, Lee S, Lee SB, Lee ES, Kim JG, Bok SH, and Jeong TS (2001) Low-density lipoprotein-antioxidant constituents of Saururus chinensis. J Nat Prod 64, 1562-1564. https://doi.org/10.1021/np0006061
  2. Baek MY, Cho JG, Lee DY, Ahn EM, Jeong TS, and Baek NI (2010) Isolation of triterpenoids from the stem bark of Albizia julibrissin and their inhibition activity on ACAT-1 and ACAT-2. J Korean Soc Appl Biol Chem 53, 310-315. https://doi.org/10.3839/jksabc.2010.048
  3. Brecher P and Chan CT (1980) Properties of acyl-CoA: cholesterol acyltransferase in aortic microsomes from atherosclerotic rabbits. Biochim Biophys Acta 617, 458-471. https://doi.org/10.1016/0005-2760(80)90012-0
  4. Chung BS and Shin MG (2000) Dictionary of Korean Folk Medicine, Young Lim Sa, Seoul, Korea.
  5. Diaz MN, Frei B, Vita JA, and Keaney JF (1997) Antioxidants and atherosclerotic heart disease. N Engl J Med 337, 408-416. https://doi.org/10.1056/NEJM199708073370607
  6. Glass CK and Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104, 501-516.
  7. Jialal I and Devaraj S (1996) Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem 42, 498-506.
  8. Kim JK (1984) Illustrated natural drugs encyclopedia, (Vol. 22). Namsandang, Seoul, Korea.
  9. Kim NY and Ryu JH (2003) Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother Res 17, 372-375. https://doi.org/10.1002/ptr.1160
  10. Lawrence LR and Gregory SS (2000) Cholesterol esters and atherosclerosis-a game of ACAT and mouse. Nat Med 6, 1341-1347. https://doi.org/10.1038/82153
  11. Lee CH, Jeong TS, Choi YK, Hyun BW, Oh GT, Kim EH, Kin JR, Han JI, and Bok SH (2001) Anti-atherogenic effect of citrus flavonoids, maringin and naringenin associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 284, 681-688. https://doi.org/10.1006/bbrc.2001.5001
  12. Lee JK, Cho JG, Song MC, Yoo JS, Lee DY, Yang HJ, Han KM, Kim DH, Oh YJ, Jeong TS, and Baek NI (2009) Isolation of isoquinoline alkaloids from the tuber of Corydalis turtschaninovii and their inhibition activity on low density lipoprotein oxidation. J Korean Soc Appl Biol Chem 52, 646-654. https://doi.org/10.3839/jksabc.2009.108
  13. Lee SU, Shim KS, Ryu SY, Min YK, and Kim SH (2009) Machilin A isolated from Myristica fragrans stimulates osteoblast differentiation. Planta Med 75, 152-157. https://doi.org/10.1055/s-0028-1112197
  14. Li G, Ju HK, Chang HW, Jahng Y, Lee SH, and Son JK (2003) Melanin biosynthesis inhibitors from the bark of Machilus thunbergii. Biol Pharm Bull 26, 1039-1041. https://doi.org/10.1248/bpb.26.1039
  15. Ma CJ, Kim YC, and Sung SH (2009) Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii. J Enzy Inhib Med Ch 24, 1117-1121. https://doi.org/10.1080/14756360802632971
  16. Ma CJ, Sung SH, and Kum YC (2004) Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med 70, 79-80. https://doi.org/10.1055/s-2004-815463
  17. Park BY, Min BS, Kwon OK, Oh SR, Ahn KS, Kim TJ, Kim DY, Bae KW, and Lee HK (2004) Increase of Caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol Pharm Bull 27, 1305-1307. https://doi.org/10.1248/bpb.27.1305
  18. Regnstrom J, Nilsson J, Tornvall P, Landou C, and Hamsten A (1992) Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 339, 1183-1186. https://doi.org/10.1016/0140-6736(92)91129-V
  19. Rudel LL, Lee RG, and Cockman TL (2001) Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol 12, 121-127. https://doi.org/10.1097/00041433-200104000-00005
  20. Salonen JT, Yla-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, and Witztum JL (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339, 883-887. https://doi.org/10.1016/0140-6736(92)90926-T
  21. Shimomura H, Sashida Y, and Oohara M (1987) Lignans from Machilus thunbergii. Phytochemistry 26, 1513-1515. https://doi.org/10.1016/S0031-9422(00)81847-6
  22. Shimomura H, Sashida Y, and Oohara M (1988) Lignans from Machilus thunbergii. Phytochemistry 27, 634-636. https://doi.org/10.1016/0031-9422(88)83162-5
  23. Song MC, Ahn EM, Bang, MH, Kim SY, Rho YD, Kwon BM, Lee HS, and Baek NI (2004) Phenylpropanoids from Myristica fragans Houtt. J Korean Soc Appl Biol Chem 47, 366-369.
  24. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, and Witztum JL (1989) Beyond cholesterol. Modification of low density lipoprotein that increases its atherogenicity. N Engl J Med 320, 915-924. https://doi.org/10.1056/NEJM198904063201407
  25. Yu YU, Kang SY, Park HY, Sung SH, Lee EJ, and Kim YJ (2000) Antioxidant lignans from Machilus thunbergii protect $CCl_4$- injured primary cultures of rat hepatocytes. J Pharm Pharmacol 52, 1163-1169. https://doi.org/10.1211/0022357001774949

Cited by

  1. Constituents of Machilus thunbergii bark and inhibition of cyclin-dependent kinases (CDKs) by procyanidin B2 vol.54, pp.6, 2011, https://doi.org/10.1007/BF03253192
  2. Flavonoid glycosides from cowpea seeds (Vigna sinensis K.) inhibit LDL oxidation vol.21, pp.2, 2012, https://doi.org/10.1007/s10068-012-0080-7
  3. Flavonoids from Machilus japonica Stems and Their Inhibitory Effects on LDL Oxidation vol.15, pp.9, 2014, https://doi.org/10.3390/ijms150916418